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Prophylactic and long-lasting efficacy of 
senolytic CAR T cells against age-related 
metabolic dysfunction

Corina Amor    1,14  , Inés Fernández-Maestre2,3,14, Saria Chowdhury1, Yu-Jui Ho4, 
Sandeep Nadella    1, Courtenay Graham    5, Sebastian E. Carrasco6, 
Emmanuella Nnuji-John1,7, Judith Feucht8,9, Clemens Hinterleitner4, 
Valentin J. A. Barthet    4, Jacob A. Boyer10,11, Riccardo Mezzadra4, 
Matthew G. Wereski2, David A. Tuveson1, Ross L. Levine    2,12, Lee W. Jones5,12, 
Michel Sadelain    8 & Scott W. Lowe4,13

Senescent cells, which accumulate in organisms over time, contribute to 
age-related tissue decline. Genetic ablation of senescent cells can ameliorate 
various age-related pathologies, including metabolic dysfunction and 
decreased physical fitness. While small-molecule drugs that eliminate 
senescent cells (‘senolytics’) partially replicate these phenotypes, they 
require continuous administration. We have developed a senolytic therapy 
based on chimeric antigen receptor (CAR) T cells targeting the senescence-
associated protein urokinase plasminogen activator receptor (uPAR), and 
we previously showed these can safely eliminate senescent cells in young 
animals. We now show that uPAR-positive senescent cells accumulate  
during aging and that they can be safely targeted with senolytic CAR T cells.  
Treatment with anti-uPAR CAR T cells improves exercise capacity in 
physiological aging, and it ameliorates metabolic dysfunction (for example, 
improving glucose tolerance) in aged mice and in mice on a high-fat diet. 
Importantly, a single administration of these senolytic CAR T cells is 
sufficient to achieve long-term therapeutic and preventive effects.

Cellular senescence is a stress response program characterized by 
stable cell cycle arrest1,2 and the production of the senescence-asso-
ciated secretory phenotype (SASP), which includes pro-inflammatory 
cytokines and matrix remodeling enzymes3. In physiological conditions 

in young individuals (for example, wound healing, tumor suppression), 
the SASP contributes to the recruitment of immune cells, whose role is 
to clear the senescent cells and facilitate restoration of tissue homeo-
stasis3. However, during aging, the combination of increased tissue 
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uPAR-positive and uPAR-negative cells sorted by fluorescence-acti-
vated cell sorting (FACS) from the liver, fat and pancreas (Fig. 1b–m 
and Extended Data Figs. 2 and 3). Using unsupervised clustering and 
marker-based cell labeling20,21, we identified the major uPAR-positive 
cell types and cell states present in each of the three organs (Fig. 1b–d 
and Extended Data Fig. 2). Of note, some minor cell types (for exam-
ple, hepatic stellate cells in the liver, and beta cells in the pancreas) 
require specialized isolation procedures and were not captured using  
our protocol22,23.

Analysis of the different populations for uPAR expression indi-
cated that endothelial and myeloid cells were the most prominent 
uPAR-expressing populations in the liver (Fig. 1e and Extended Data  
Fig. 2b), whereas in adipose tissue uPAR was expressed mainly in sub-
sets of preadipocytes, dendritic cells and myeloid cells (Fig. 1f and 
Extended Data Fig. 2d). In the aged pancreas, uPAR expression was 
prominent in subsets of endothelial cells, fibroblasts, dendritic cells 
and myeloid cells (Fig. 1g and Extended Data Fig. 2f). Compared to 
uPAR-negative cells, uPAR-positive cells were significantly enriched 
in gene signatures linked to inflammation, the complement pathway 
and the coagulation cascade as well as transforming growth factor-beta 
signaling (Extended Data Fig. 3a–c).

Importantly, when senescent cells present in these tissues were 
identified using two independent transcriptomic signatures of senes-
cence17,24, we observed that the main senescent cell types present in 
aged tissues were distinct: endothelial and myeloid cells in the liver 
(Fig. 1h and Extended Data Fig. 3d,g–i), dendritic cells, myeloid cells and 
preadipocytes in adipose tissue (Fig. 1j and Extended Data Fig. 3e,j–l) 
and endothelial cells, fibroblasts, dendritic cells and myeloid cells in the 
pancreas (Fig. 1l and Extended Data Fig. 3f,m–o). Thus, uPAR-positive 
cells constituted a significant fraction of the senescent cell burden in 
these tissues (67–90% in liver, 92–66% in adipose tissue and 76–63% in 
pancreas; Fig. 1i,k,m and Extended Data Fig. 3h,k,n). Note that while our 
analysis could not evaluate pancreatic beta cells, analysis of published 
data revealed that expression of Plaur was significantly upregulated 
in senescent beta cell populations isolated from aged animals and 
subjected to bulk RNA-seq25.

Finally, to ascertain whether uPAR was expressed in senescent 
cells that accumulate with age in human tissues, we analyzed available 
datasets of human pancreas collected from young (0- to 6-year-old) 
and aged (50- to 76-year-old) individuals26. While we were limited to 
an analysis of PLAUR transcript abundance in these settings, we found 
that the fraction of PLAUR-expressing cells was substantially greater 
in older individuals (Fig. 2).

Overall, these results indicate that the levels of uPAR-positive 
senescent cells increase with age and that most senescent cells present 
in aged tissues express uPAR. The fact that we can identify settings 
in which an increased expression of uPAR protein expression does 
not correlate with Plaur mRNA levels indicates that the absence of an 
induction of Plaur transcript levels does not exclude the possibility of 
an increase in uPAR protein expression.

Effect of uPAR CAR T cells in naturally aged mice
To determine the tolerability and therapeutic activity of uPAR-targeting 
CAR T cells on physiologically aged mice, we intravenously infused 

damage and decreased function of the immune system leads to the 
accumulation of senescent cells4,5, thereby generating a chronic pro-
inflammatory milieu that leads to a range of age-related tissue patholo-
gies6–9. As such, senolytic strategies to eliminate senescent cells from 
aged tissues have the potential to dramatically improve healthspan.

Most efforts to develop senolytic therapies have focused on the 
development of small-molecule drugs that target poorly defined 
molecular dependencies present in senescent cells and that must be 
administered repeatedly over time10. In contrast, CAR T cells are a form 
of cellular therapy that redirects T cell specificity toward cells express-
ing a specific cell-surface antigen11. Unlike small molecules, CAR T cells 
only require that the target antigen is differentially expressed on target 
cells compared to normal tissues; moreover, as ‘living drugs’, these 
therapeutics have the potential to persist and mediate their potent 
effects for years after single administration12. We have shown that CAR 
T cells targeting the cell-surface protein uPAR, which is upregulated 
on senescent cells, can efficiently deplete senescent cells in young 
animals and reverse liver fibrosis. Here, we explore whether CAR T cells 
could safely and effectively eliminate senescent cells in aged mice and 
modulate healthspan.

Results
uPAR is upregulated in physiological aging
uPAR promotes remodeling of the extracellular matrix during fibrinoly-
sis, wound healing and tumorigenesis13. In physiological conditions, it is 
primarily expressed in certain subsets of myeloid cells and, at low levels, 
in the bronchial epithelium14. We recently described the upregulation of 
uPAR on senescent cells across different cell types and multiple triggers 
of senescence14 and showed that CAR T cells targeting this cell-surface 
protein could efficiently remove senescent cells from tissues in young 
mice without deleterious effects to normal tissues14. Given these results, 
we set out to test whether uPAR might serve as a target for senolytic 
CAR T cells in aged tissues.

Plasma levels of soluble uPAR positively correlate with the pace of 
aging in humans15,16 and Plaur (the gene encoding uPAR) is a component 
of the SenMayo gene signature recently reported to identify senescent 
cells in aged tissues17. To explore the association with uPAR expression 
in aged tissues further, we surveyed RNA-sequencing (RNA-seq) data 
from the Tabula Muris Senis project18. Expression of Plaur was upregu-
lated in several organs in samples from 20-month-old mice compared 
to 3-month-old mice (Extended Data Fig. 1a). Because mRNA levels are 
not linearly related to surface protein levels19, we performed immu-
nohistochemistry and indeed confirmed an age-associated increase 
in uPAR protein in liver, adipose tissue, skeletal muscle and pancreas 
(Fig. 1a and Extended Data Fig. 1b). This increase in the fraction of 
uPAR-positive cells was paralleled by an increase in the percentage of 
senescence-associated beta-galactosidase (SA-β-gal)-positive cells 
(Extended Data Fig. 1c–f). Co-immunofluorescence revealed that a 
large majority of these SA-β-gal-expressing cells were in fact uPAR 
positive, whereas only a minority of these cells were macrophages as 
evidenced by coexpression of F4/80 (Extended Data Fig. 1g–j).

To add granularity to our understanding of the molecular charac-
teristics of uPAR-positive cells in aged tissues, we performed single-
cell RNA sequencing (scRNA-seq) on approximately 4,000–15,000 

Fig. 1 | uPAR is upregulated on senescent cells in physiological aging.  
a, Immunohistochemical staining of mouse uPAR in liver, adipose tissue, muscle 
and pancreas from young (age 3 months) or old (age 20 months) mice (n = 3 per 
age). b–m, Single-cell analysis of uPAR expression and senescence. uPAR-positive 
and uPAR-negative cells were sorted from the liver, adipose tissue and pancreas 
of 20-month-old mice and subjected to single-cell RNA-seq by 10x chromium 
protocol (n = the sequencing of four mice where two females were combined into 
one replicate and two males were combined into another replicate). b, Uniform 
manifold approximation and projection (UMAP) visualization of liver cell types. 
c, UMAP visualization of adipose tissue cell types. d, UMAP visualization of 

pancreas cell types. e, UMAP visualization of hepatic uPAR-negative and uPAR-
positive cell types. f, UMAP visualization of adipose uPAR-negative and uPAR-
positive cell types. g, UMAP visualization of pancreatic uPAR-negative and uPAR-
positive cell types. h,j,l, UMAP visualizations with senescence signature scores24 
in each cell indicated by the color scale. i,k,m, Quantification of the proportion of 
uPAR-positive and uPAR-negative cells contributing to the respective senescence 
signature. h,i, Liver; j,k, adipose tissue; l,m, pancreas. Results are from one 
independent experiment (a–m). DC, dendritic cell; NK, natural killer; pDC, 
plasmacytoid dendritic cell; ASPC, adipose progenitor and stem cells.
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aged C57BL/6 mice (18–20 months old) with our previously developed 
mouse second-generation CAR T cells targeting mouse uPAR14 (m.uPAR-
m.28z). m.uPAR-m.28z CAR T cells contain an anti-mouse uPAR single-
chain variable fragment (scFV) linked to mouse CD28 costimulatory 

and mouse CD3ζ signaling domains and are, therefore, fully mouse 
CAR T cells that allow for syngeneic studies14. Importantly, the CAR T 
cells were generated from CD45.1 mice and infused into C57BL/6 mice, 
which are CD45.2, thus allowing for CAR T cells to be differentiated from 
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endogenous T cells and therefore monitored over time (Fig. 3a). As 
controls, parallel cohorts of sex- and aged-matched mice were infused 
with the same dose of either untransduced T (UT) cells or T cells express-
ing a mouse CAR targeting human CD19 (h.19-m.28z) that does not 
recognize the mouse CD19 protein but encompasses the exact same 
signaling structure thus controlling for nonspecific T cell cytotoxicity. 
We opted to test a dose of 0.5 × 106 CAR-positive cells, which we previ-
ously found to balance safety and senolytic efficacy in young animals14.

Mice infused with m.uPAR-m.28z CAR T cells, but not controls, 
showed a reduction in the proportions of SA-β-gal-positive and uPAR-
positive cells throughout the tissues examined, most notably in the 
pancreas, liver and adipose tissue (Fig. 3b and Extended Data Fig. 4). 
As has been previously reported, our aged mouse cohort displayed 
elevated levels of pro-inflammatory cytokines linked to the SASP in the 
peripheral blood, a phenomenon often referred to as ‘inflammaging’27. 
Consistent with a reduction in senescent cell burden and/or improved 
organismal health, m.uPAR-m.28z CAR T cell-treated animals showed 
a decrease in the plasma levels of these factors (Fig. 3c).

Despite detectable expression of uPAR in some normal tissues, our 
previous work indicates that a dose of 0.5 × 106 m.uPAR-m.28z CAR T 
cells is well tolerated in young mice14. As was the case in young animals, 
the dose of 0.5 × 106 m.uPAR-m.28z CAR T cells was well tolerated in 

aged mice (18–20 months old), all of whom remained active without 
observable signs of morbidity, weight loss or relevant alterations in 
serum chemistry or complete blood counts (Fig. 4). In addition, micro-
scopic evaluation of tissues did not reveal tissue damage secondary 
to toxicity in aged tissues obtained from whole-body necropsies of 
m.uPAR-m.28z CAR T cell-treated mice when compared to age-matched 
control-treated animals (Extended Data Fig. 5).

One prominent feature of aging in humans and mice is the emer-
gence of age-related metabolic dysfunction, which is a collection of 
phenotypes linked to impaired glucose tolerance25,28 and decreased 
exercise capacity29,30. Interestingly, we observed that aged m.uPAR-
m.28z CAR T cell-treated mice had significantly decreased fasting 
glucose levels compared with UT or h.19-m.28z-treated controls  
(Fig. 5a). Upon challenge with an intraperitoneal bolus of glucose (2 g 
per kg body weight), m.uPAR-m.28z CAR T cell-treated aged but not 
young mice presented significantly lower plasma glucose levels than 
controls for over 2 h after administration (Fig. 5b,c and Extended Data 
Fig. 6a,b). Furthermore, m.uPAR-m.28z CAR T cell-treated mice had 
lower basal insulin levels after fasting that was followed by a significant 
increase in insulin levels 15 min after the glucose load, indicative of 
improved pancreatic beta cell function (Fig. 5d). Of note, m.uPAR-m.28z 
CAR T cell-treated aged mice also presented improved peripheral 
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insulin sensitivity, suggesting a coordinated multiorgan improvement 
in glucose homeostasis (Extended Data Fig. 6c,d). In addition, most 
aged mice with m.uPAR-m.28z CAR T cells showed improvements in 
their exercise capacity at 2.5 months after treatment compared to 
pretreatment levels (Fig. 5e,f).

Importantly, the improvement in metabolic function noted in 
m.uPAR-m.28z CAR T cell-treated old mice was accompanied by an 
expansion of m.uPAR-m.28z CAR T cells and their trafficking to sev-
eral organs such as liver and spleen as assessed by flow cytometry  
(Fig. 5g,h). These m.uPAR-m.28z CAR T cells were mostly cytotoxic 
CD8+T cells in the livers and CD4+T cells in the spleen and presented an 
effector phenotype indicative of their activated response (Extended 
Data Fig. 7a–d). Of note, this expansion did not occur in aged-matched 
UT or h.19-m.28z-treated controls and was lower in m.uPAR-m.28z CAR 
T cell-treated young mice, results that were consistent with the lower 
fraction of uPAR-positive cells in younger animals (Figs. 1a and 5g,h 
and Extended Data Fig. 1).

Collectively, these results show that uPAR CAR T cells can safely 
and effectively remove senescent uPAR-positive cells in the tissues 
of naturally aged mice and ameliorate age-dependent metabolic and 
physical dysfunction.

Persistence and prophylaxis by uPAR CAR T cells in aging
Unlike small molecules, CAR T cells can persist in the organism and 
exert their effects over time12. Indeed, in human cancer patients cured 
of disease, the presence of CAR T cells has been noted as much as 10 
years after the initial infusion12. Such persistence raises the question of 
whether the administration of uPAR CAR T cells in young animals would 
prevent or delay the development of age-triggered phenotypes later in 
life. To explore this possibility, we infused young mice (3 months old) 
with one dose of 0.5 × 106 m.uPAR-m.28z CAR T, h.19-m.28z CAR T or UT 

cells and monitored the mice over their natural lifespan (Fig. 6). Despite 
the initially lower numbers of uPAR-positive cells compared to aged 
animals (see above), uPAR CAR T cells were detectable in the spleens 
and livers of treated mice 12 months after the initial single infusion at 
substantially higher levels than the low number of persisting UT or h.19 
CAR T controls (Fig. 6a,b). Consistent with their persistent activity, 
flow cytometry of the spleen and livers of uPAR CAR T cell-treated mice 
indicated that the persisting cells were mostly cytotoxic CD8+ T cells 
harboring a memory and effector phenotype in the spleens (Extended 
Data Fig. 7e–h). Therefore, uPAR CAR T cells persist and expand over the 
lifespan of the animal, presumably owing to increased antigen stimula-
tion as the frequency of target uPAR-positive cells increases over time.

As was observed in aged animals upon therapeutic treatment, 
prophylactic uPAR CAR T cell administration in young mice limited 
metabolic decline in old age. Specifically, uPAR CAR T cell-treated 
mice had significantly lower fasting glucose levels (Fig. 6c), improved 
glucose tolerance (Fig. 6d,e) and enhanced pancreatic beta cell func-
tion as assessed by glucose-stimulated insulin secretion (Fig. 6f) than 
mice treated with either UT or h.19-m.28z. In terms of fitness, mice 
that in their youth had been treated with m.uPAR-m.28z CAR T cells, 
compared with control-treated mice, showed higher exercise capacity 
at 9 months of age (Fig. 6g,h), although this waned over time (Extended 
Data Fig. 7i,j). These phenotypes correlated with a significant decrease 
in both SA-β-gal-positive and uPAR-positive cells in pancreas, liver and 
adipose tissue (Fig. 6i and Extended Data Fig. 7k–p). Taken together, 
these results show that uPAR CAR T cells can not only treat, but also 
prevent, features of age-dependent metabolic decline.

uPAR CAR T cells to treat or prevent metabolic syndrome
Many of the features associated with metabolic syndrome in aged 
mice can be recapitulated in young animals given a high-fat diet 
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(HFD)31 and, indeed, obesity has been described to accelerate the 
‘aging clock’32. As in aged animals, such treatment leads to the accu-
mulation of senescent cells25 (Extended Data Fig. 8a–d). To test the 
therapeutic potential of uPAR CAR T cells in this context, we modeled 
metabolic syndrome by feeding mice an HFD, which induces obesity 
and metabolic stress33. After 2 months on an HFD, mice were treated 
with 0.5 × 106 m.uPAR-m.28z CAR T or UT cells and continued on the 
diet (Fig. 7a). At 20 d after infusion, mice treated with uPAR CAR T 
cells displayed significantly lower body weight, better fasting blood 

glucose levels and improvements in both glucose and insulin toler-
ance compared to controls (Fig. 7b–g). This therapeutic effect per-
sisted through the period of monitoring (2.5 m after cell infusion) 
and was accompanied by decreased senescent cell burden in pan-
creas, liver and adipose tissue as assessed by SA-β-gal (Fig. 7h,i and 
Extended Data Fig. 8e–h). Thus, uPAR CAR T cell therapy produced 
a similar improvement to metabolic dysfunction in the context of 
metabolic syndrome in young animals as was observed in naturally  
aged mice.
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Fig. 4 | Safety of uPAR CAR T cells in aged mice. Mice were treated with m.uPAR-
m.28z CAR T cells, h.19-m.28z CAR T cells or UT cells as schematized in Fig. 3a.  
a, Body weight 24 h before and at various times after cell infusion (n = 12 mice 
for UT; n = 11 for h.19-m.28z; n = 12 for m.uPAR-m.28z). b, Triglyceride levels 20 d 
after cell infusion (n = 12 mice for UT; n = 11 for h.19-m.28z; n = 13 for m.uPAR-
m.28z). c, Cholesterol levels 20 d after cell infusion (n = 12 for UT and for h.19-
m.28z; n = 13 for m.uPAR-m.28z). d, Alanine transaminase (ALT) levels 20 d after 
cell infusion (sample sizes as in c). e, Aspartate aminotransferase (AST) levels  
20 d after cell infusion (n = 12 for UT; n = 11 for h.19-m.28z; n = 13 for m.uPAR-
m.28z). f, BUN/creatinine ratio 20 d after cell infusion (sample sizes as in c).  
g, Creatine kinase (CK) 20 d after cell infusion (n = 12 for UT; n = 9 for h.19-m.28z; 

n = 11 for m.uPAR-m.28z). h, Hemoglobin levels 20 d after cell infusion (n = 11 for 
UT; n = 11 for h.19-m.28z; n = 10 for m.uPAR-m.28z). i, Platelet numbers 20 d  
after cell infusion (n = 11 for UT; n = 11 for h.19-m.28z; n = 10 for m.uPAR-m.28z).  
j, Lymphocyte numbers 20 d after cell infusion (n = 11 for UT; n = 11 for h.19-m.28z; 
n = 10 for m.uPAR-m.28z). k, Monocyte numbers 20 d after cell infusion (n = 11 for 
UT; n = 11 for h.19-m.28z; n = 10 for m.uPAR-m.28z). l, Neutrophil numbers 20 d 
after cell infusion (n = 11 for UT; n = 10 for h.19-m.28z; n = 10 for m.uPAR-m.28z). 
m, Eosinophil numbers 20 d after cell infusion (n = 11 for UT; n = 11 for h.19-m.28z; 
n = 10 for m.uPAR-m.28z). Results are from two independent experiments. Data 
are the mean ± s.e.m.; P values from two-tailed unpaired Student’s t-test (b–m).
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To test whether prophylactic administration of uPAR CAR T cells 
could impede the development of metabolic disorders in young mice 
given an HFD, we administered 0.5 × 106 m.uPAR-m.28z CAR T cells 1.5 
months before placement on an HFD (Fig. 7j). Remarkably, m.uPAR-
m.28z CAR T cells (but not treatment with UT cells) acted prophylacti-
cally to blunt the accumulation of senescent cells over time, an effect 
that was also associated with decreased weight gain and glucose levels 
3.5 months after infusion (Extended Data Fig. 8i–l and Fig. 7k–n). At this 
time, m.uPAR-m.28z CAR T cells were detectable and enriched in the 
spleens and livers of treated mice, where they again were composed 
mostly of CD8+ T cells with an effector phenotype (Extended Data  
Fig. 9). This preventive effect on metabolic dysfunction was sustained 
for at least 5.5 months after cell infusion despite continuous exposure 
to an HFD (Fig. 7o,p).

Overall, these data highlight the contribution of uPAR-positive 
cells to metabolic dysfunction in aged and obese mice and raise the 
possibility that targeting these cells through CAR T cells could have 
therapeutic benefit in humans.

Discussion
Our study provides proof-of-principle evidence that senolytic cell thera-
pies can ameliorate symptoms associated with physiological aging. We 
previously showed that uPAR-targeting CAR T cells could safely and 
effectively eliminate senescent cells in the livers of young animals14. 

Here, focusing on metabolic dysfunction as one prominent age-related 
pathology, we show that: (i) the fraction of uPAR-positive cells increases 
with age; (ii) these cells significantly contribute to the senescence bur-
den in aged tissues; (iii) uPAR-positive cells with senescence signatures 
consist of both immune and non-immune populations, the latter con-
sisting of a range of cell types that are organ dependent; (iv) uPAR CAR 
T cells can be effective at eliminating uPAR-positive senescent cells; (v) 
their effect is not associated with pathology in tissues or alterations 
of hepatic and renal functional parameters in aged mice; and finally, 
(vi) the action of uPAR CAR T cells is associated with improved glucose 
homeostasis and metabolic fitness in both physiological aging and 
HFD feeding. Importantly, at doses used to produce these therapeu-
tic benefits, we noted no overt toxicities of uPAR CAR T cells, which 
could persist and expand for over 15 months as mice progressed from 
a youthful to an aged state.

Perhaps the most striking observation of the current work was the 
ability of uPAR CAR T cells to act prophylactically to blunt age-induced 
and diet-induced metabolic decline. Unlike senolytic approaches based 
on small molecules, uPAR CAR T cells have long-lasting effects after the 
administration of a single low dose, causing a marked impairment in age-
induced or HFD-induced metabolic syndrome when mice were treated 
during youth or administration of HFD, respectively. Our findings are 
consistent with those of an earlier study that explored vaccination 
against GPNMB on senescent cells to address age-related pathology34, 
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Fig. 5 | uPAR CAR T cells revert natural age-associated phenotypes. Mice 
were treated with m.uPAR-m.28z CAR T cells, h.19-m.28z CAR T cells or UT cells 
as schematized in Fig. 3a. a, Levels of basal glucose (mg ml−1) after starvation 
2.5 months after cell infusion (n = 11 mice for UT; n = 12 for h.19-m.28z and for 
m.uPAR-m.28z). b, Levels of glucose before (0 min) and after intraperitoneal 
administration of glucose (2 g per kg body weight) 2.5 months after cell infusion 
(samples sizes as in a). c, Area under the curve (AUC) representing the results 
from b. Each point represents a single mouse. d, Levels of insulin before and 
15 min after intraperitoneal glucose administration (2 g per kg body weight) 2.5 
months after cell infusion (n = 6 for UT; n = 5 for h.19-m.28z; n = 6 for m.uPAR-
m.28z). e, Fold change in time to exhaustion in exercise capacity testing before 

cell infusion and 2.5 months after it (n = 7 for UT; n = 8 for h.19-m.28z and n = 8 
for m.uPAR-m.28z). f, Fold change in maximum speed in capacity testing before 
cell infusion and 2.5 months after it (sample sizes as in e). g,h, Percentage of 
CD45.1+ T cells in the spleen (g) or liver (h) of 4-month-old or 20-month-old  
mice 20 d after cell infusion (n = 3 mice per age group for UT and for h.19-m.28z; 
n = 4 for m.uPAR-m.28z). The corresponding flow cytometry gating is shown  
in Extended Data Fig. 10. Results are from two independent experiments  
(a–c, e and f) or one experiment (d, g and h). Data are the mean ± s.e.m.; P values 
from two-tailed unpaired Student’s t-test (a, c, d, g and h) or two-tailed Mann–
Whitney test (e and f).
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although with our cellular therapy, both effect sizes and duration were 
substantially larger. In fact, our results demonstrate a protective effect 
for over a year in the context of physiological aging in the laboratory 
mouse, a species with an average lifespan of around 2 years.

Studies using genetic or pharmacological approaches to senolysis 
have been equivocal as to whether elimination of senescent cells will 

significantly extend longevity29,30,35. Our current studies are not suf-
ficiently powered to draw conclusions on longevity at this stage. As 
senescent cells contribute to a range of age-related tissue pathologies, 
studying the impact of senolysis in aged animals provides an oppor-
tunity to interrogate multiple comorbidities under similar conditions. 
Future studies will evaluate the potential of uPAR CAR T cells (or other 
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Fig. 6 | uPAR CAR T cells prevent natural age-associated phenotypes. Three- 
to four-month-old C57BL/6N mice were injected with 0.5 × 106 m.uPAR-m.28z 
CAR T cells, h.19-m.28z CAR T cells or UT cells generated from CD45.1 mice 
16 h after administration of cyclophosphamide (200 mg per kg body weight). 
Mice were monitored over time and/or harvested at 15 months of age. a,b, 
Percentage of CD45.1+ T cells in the spleen (a) or liver (b) of 15-month-old mice 
12 months after cell infusion (n = 3 mice per group). c, Levels of basal glucose 
after starvation 15–18 months after cell infusion (n = 11 mice for UT cells; n = 12 
for h.19-m.28z and for m.uPAR-m.28z). d, Levels of glucose before (0 min) and 
after intraperitoneal administration of glucose (2 g per kg body weight) 15–18 
months after cell infusion (sample sizes as in c). e, AUC representing the results 

from d. Each point represents a single mouse. f, Levels of insulin (ng ml−1) before 
and 15 min after intraperitoneal glucose (2 g per kg body weight) 15 months after 
cell infusion (n = 6 for UT cells; n = 6 for h.19-m.28z; n = 7 for m.uPAR-m.28z). g, 
Time to exhaustion in exercise capacity testing 6 months after cell infusion (n = 9 
for UT cells; n = 7 for h.19-m.28z; n = 12 for m.uPAR-m.28z). h, Maximum speed 
(m min−1) in capacity testing 6 months after cell infusion (sample sizes as in g). 
i, Representative staining of SA-β-gal and uPAR 15 months after cell infusion. 
Results are from one independent experiment (a, b, f and i) or two independent 
experiments (c–e, g and h). Data are the mean ± s.e.m.; P values from two-tailed 
unpaired Student’s t-test (a–c, e and f) or two-tailed Mann–Whitney test (g and h).
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Fig. 7 | uPAR CAR T cells are therapeutic and preventive in metabolic 
syndrome. a, Experimental scheme for b–i. Three-month-old C57BL/6N 
mice were treated with an HFD for 2 months followed by intravenous 
infusion with 0.5 × 106 m.uPAR-m.28z or UT cells 16 h after administration 
of cyclophosphamide (200 mg per kg body weight). Mice were euthanized 1 
month later or monitored over time. b, Body weight 1 month after cell infusion 
(n = 10 mice per group). c, Basal glucose levels after starvation at 1 month after 
cell infusion (n = 10 mice per group). d, Glucose levels before (0 min) and after 
intraperitoneal administration of glucose (1 g per kg body weight) 1 month 
after cell infusion (n = 10 mice per group). e, AUC representing the results from 
d. f, Glucose levels before (0 min) and after intraperitoneal administration of 
insulin (0.5 units per kg body weight) 1 month after cell infusion (n = 4 mice per 
group). g, AUC representing the results from f. Each point represents a single 
mouse. h, Glucose levels before (0 min) and after intraperitoneal glucose 
administration (1 g per kg body weight) 2.5 months after cell infusion (n = 3 
mice per group). i, AUC representing the results from h. Each point represents 

a single mouse. j, Experimental scheme for k–p. Three-month-old C57BL/6N 
mice were intravenously infused with 0.5 × 106 m.uPAR-m.28z or UT cells 16 h 
after administration of cyclophosphamide (200 mg per kg body weight). At 1.5 
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(n = 20 mice per group). l, Basal glucose levels after starvation 3.5 months after 
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p, AUC representing the results from o. Each point represents a single mouse 
(a–p). Results are from two independent experiments (b–e and k–n) or one 
independent experiment (f–i, o and p). Data are the mean ± s.e.m.; P values 
derived from two-tailed unpaired Student’s t-test (b, c, e, g, i, k, l, n and p). 
Schematics were created with BioRender.com.
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senolytic cell therapies) in additional aging and related tissue-damage 
pathologies, the latter disease contexts providing a more likely starting 
point for clinical implementation.

It remains to be determined which of the uPAR-positive cell 
populations targeted by uPAR CAR T cells are responsible for the 
improved metabolic function we observe. In other senolytic studies, 
the elimination of senescent pancreatic beta cells has been linked to 
improved glucose tolerance25. However, there are reports suggesting 
that targeting senescent cells in adipose tissue28 or even immune cell 
senescence36 may also play a role. In this regard, recent studies sug-
gest that the elimination of macrophage populations with senescent 
features can also improve tissue decline in mice37,38. Whether or not 
these macrophages are truly ‘senescent’ or have an alternative cell 
state is a topic of debate; regardless, given that we observe a fraction 
of uPAR-expressing macrophages that also coexpress SA-β-gal and 
senescence-associated transcriptional signatures accumulating in 
aged tissues, it seems likely that their elimination contributes to the 
phenotypes we observe.

While the mechanism of action of most current small molecules 
is often inferred or poorly understood, senolytic CAR T cells have a 
clear underlying rationale based on the expression of a specific sur-
face antigen. While toxicity issues are invariably a concern, cellular 
therapy harbors the versatility to simultaneously target several sur-
face antigens through AND gate approaches11, modulate persistence 
through different CAR designs39 and/or incorporate safety switches40, 
all of which provide avenues to mitigate side effects that are not pos-
sible through vaccination strategies or small-molecule approaches40. 
Indeed, another recent report reveals that mice and primates tolerate 
CAR T cells that target a natural killer cell ligand that is upregulated 
on senescent cells and other cell types41. Taken together, these efforts 
could result in the identification of tissue-specific senolytic antigens 
that could be targeted with cellular therapy to treat different age-
related phenotypes. The persistence of the uPAR-targeted CAR T cells 
and the durability of the effects after a single low-dose treatment high-
light the clinical potential of the senolytic CAR T cell approach for the 
treatment of chronic pathologies.

Methods
Mice
All mouse experiments were approved by the MSKCC and/or CSHL 
Internal Animal Care and Use Committee (animal protocol 11-06-011 
at MSKCC and 21-4 at CSHL). All relevant animal use guidelines and 
ethical regulations were followed. Mice were maintained under spe-
cific pathogen-free conditions. Housing was on a 12-h–12-h light–dark 
cycle under standard temperature and humidity of approximately 
18–24 °C and 40–60%, respectively. The following mice were used: 3- to 
4-month-old C57BL/6 mice (purchased from Charles River), 18-month-
old C57BL/6 mice (obtained from the National Institute of Aging) and 
6-week-old B6.SJL-Ptrca/BoyAiTac (CD45.1) mice (purchased from 
Taconic). Mice of both sexes were used at 8–12 weeks of age and 18–20 
months of age for the aging experiments, males of 8–12 weeks old for 
the HFD experiments and females of 6–10 weeks old for T cell isolation. 
Mice were kept in group housing. Mice had free access to food and water 
except during the starvation period before glucose or insulin tolerance 
testing. Aging mice were fed a normal diet (PicoLab Rodent Diet 20, 
LabDiet), mice on the HFD experiments were fed an HFD (TD.06414, 
60% of kcal from fat; Envigo).

Flow cytometry
For in vivo sample preparation, livers were dissociated using the 
MACS liver dissociation kit (Miltenyi Biotec, 130-1-5-807), filtered 
through a 100-μm strainer and washed with PBS, and red blood cells 
were lysed by an ammonium–chloride–potassium (ACK) lysing buffer 
(Lonza). Cells were washed with PBS, resuspended in FACS buffer 
and either used for immediate analysis or fixed with Fixation Buffer  

(BD Biosciences, 554655) according to the manufacturer’s instruc-
tions and used for later analysis. Spleens were mechanically disrupted 
with the back of a 5-ml syringe, filtered through a 40-μm strainer and 
washed with PBS and 2 mM EDTA; then red blood cells were lysed by 
ACK lysing buffer (Lonza). Gonadal adipose tissue was dissociated 
as described42. In short, adipose tissue was isolated and placed in a 
digestion solution consisting of 4 mg ml−1 collagenase, type II (Sigma) 
in DPBS (Life Technologies) supplemented with 0.5% BSA (Sigma) 
and 10 mM CaCl2 digested at 37 °C for 20 min in a rotational shaker. 
Afterwards, samples were mechanically dissociated with a 10-ml 
serological pipette, filtered through a 40-μm strainer and washed 
with PBS and 2 mM EDTA; then red blood cells were lysed by ACK lys-
ing buffer (Lonza). Pancreata were placed into cold DMEM with 10% 
FBS and penicillin and streptomycin. The pancreata were minced in 
this media on ice into 2- to 4-mm fragments so that they would pass 
through the end of a 1-ml pipette tip with ease. The minced tissue was 
collected in a 15-ml Falcon tube and dissociated in 100 mg ml−1 Dis-
pase (Life Technologies, 17105041), 20 mg ml−1 collagenase P (Roche, 
11249002001) and 1 mM EDTA for 20 min on a heated rocker at 37 °C 
(Eppendorf). After 20 min, 5 ml of DMEM with 10% FBS was added 
to quench the reaction. The supernatant was removed and filtered 
through a 100-µm filter (VWR). Next, 5 ml of dissociation media con-
sisting of 100 mg ml−1 Dispase (Life Technologies, 17105041), 20 mg 
ml−1 collagenase P (Roche, 11249002001) and 1 mM EDTA was added 
before replacing the 15-ml tube into the heated rocker for 20 min. The 
reaction was quenched again after 20 min with media and filtered via 
a 100-µm filter. The dissociated cells were spun at 500 r.c.f. for 10 min 
in a swinging-bucket centrifuge. The supernatant was discarded, and 
the cells were resuspended in ACK lysis buffer for 2–4 min in ice. Cells 
were washed with PBS, resuspended in FACS buffer and either used 
for immediate analysis or fixed with Fixation Buffer (BD Biosciences, 
554655) and used for later analysis.

Fc receptors were blocked using FcR blocking reagent, mouse 
(Miltenyi Biotec). The following fluorophore-conjugated antibod-
ies were used in the indicated dilutions: Myc-tag AF647 (clone 9B11, 
Cell Signaling Technology, 2233S, 25; 1:50 dilution), m.CD45.1 BV785 
(clone A20, BioLegend, 110743, B347719; 1:100 dilution), m.CD45.2 
BV785 (clone 104, BioLegend, 109839, B343292; 1:100 dilution), mCD3 
AF488 (clone 17A2, BioLegend, 100210, B284975; 1:100 dilution), 
mCD4 BUV395 (clone GK1.5, BD, 563790, 1097734; 1:50 dilution), 
mCD8 PE-Cy7 (clone 53-6.7, BioLegend, 100722, B312604; 1:50 dilu-
tion), mCD62L BV421 (clone MEL-14, BioLegend, 104435, B283191; 
1:50 dilution), mCD44 APC-Cy7 (clone IM7, BD Pharminogen, 560568, 
1083068; 1:100 dilution), mCD3 BV650 (clone 17A2, BioLegend, 
100229, B350667; 1:100 dilution), mCD19 BV650 (clone 1D3, BD Bio-
sciences, 563235, 1354015; 1:100 dilution), mNKp46 BV650 (clone 
29A1.4, BioLegend, 137635, B298809; 1:100 dilution), mCD11b BUV395 
(clone M1/70, BD Biosciences, 563553, 0030272; 1:50 dilution), mLy-
6C APC-Cy7 (clone HK1.4, BioLegend, 128026, B375238; 1:100 dilu-
tion), mly6G BV605 (clone 1A8, BD Biosciences, 563005, 2144780; 
1:100 dilution), m.uPAR AF700 (R&D systems, FAB531N, 1656339; 
1:50 dilution), m.uPAR PE (R&D systems, FAB531P, ABLH0722051; 1:50 
dilution), mF4/80 PE-eFluor610 (clone BM8, Invitrogen, 61-4801-82, 
2338698; 1:100 dilution), 7-AAD (BD, 559925, 9031655; 1:40 dilution) 
or Ghost UV 450 Viability Dye (13-0868-T100, Tonbo Biosciences, 
D0868083018133, 1 µl ml−1) was used as viability dye. Flow cytometry 
was performed on an LSRFortessa instrument (BD Biosciences), FACS 
was performed on a SONY SH800S cell sorter and data were analyzed 
using FlowJo (TreeStar).

Single-cell RNA-seq
Sequencing data was demultiplexed, mapped, and processed into 
gene/cell expression matrices using 10x Genomics’ Cell Ranger 
software v7.1.0 (https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/what-is-cell-ranger/).  
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Gene expression reads were aligned to the mouse reference genome 
version gex-mm10-2020-A, available from the 10x Genomics web-
site. We kept cells using the following parameters: ‘min.cells > 10, 
nFeature_RNA > 500, nCount_RNA > 2,500, percent.mt < 15’. Gene 
expression count data were normalized using SCTransform to regress 
out the percentage of mitochondrial RNA. The R package BBKNN 
was used to remove batch effects between mouse samples, and 0.5 
was used as expression cutoff to define uPAR High cell populations. 
Clusters were identified using a resolution of 0.8, and cell types were 
annotated using R packages celldex, SingleR, Azimuth and custom 
gene sets20,21. Known markers for each cell type were plotted using 
the DotPlot function in Seurat. Senescence gene sets from refs. 17,24 
were used to calculate signature scores using the AddModuleScore 
function in Seurat, and a signature score cutoff of 0.05 was used to 
define Senescence High cell populations. Differential expression 
analysis and functional annotations of gene sets were analyzed in the 
following way: Differential gene expression analysis was performed 
by comparing all the uPAR-positive versus uPAR-negative cells using 
RunPresto in Seurat, and the differentially expressed genes (DEGs) 
were determined by >1.5-fold change in gene expression with adjusted 
P value < 0.1. Pathway enrichment analysis was performed using the 
msigDB Hallmark gene sets using enrichR43. Significance of the tests 
was assessed using combined score, described as c = log(P) × z, where 
c is the combined score, P is Fisher’s exact test P value, z is the z-score 
for deviation from expected rank, and adjusted P values defined by 
enrichR. A lollipop plot was generated by plotting the top enriched/
depleted log2(combined.score) on the x axis (directional), and size and 
color of the dots represents by −log10(adjusted P value).

Isolation, expansion and transduction of mouse T cells
B6.SJL-Ptrca/BoyAiTac mice (CD45.1 mice) were euthanized and spleens 
were collected. After tissue dissection and red blood cell lysis, primary 
mouse T cells were purified using the mouse Pan T cell Isolation Kit 
(Miltenyi Biotec). Purified T cells were cultured in RPMI-1640 (Invit-
rogen) supplemented with 10% FBS (HyClone), 10 mM HEPES (Invitro-
gen), 2 mM l-glutamine (Invitrogen), MEM non-essential amino acids 
1× (Invitrogen), 55 µM β-mercaptoethanol, 1 mM sodium pyruvate 
(Invitrogen), 100 IU ml−1 recombinant human IL-2 (Proleukin; Novartis) 
and mouse anti-CD3/28 Dynabeads (Gibco) at a bead:cell ratio of 1:2. 
T cells were spinoculated with retroviral supernatant collected from 
Phoenix-ECO cells 24 h after initial T cell activation as described in refs. 
44,45 and used for functional analysis 3–4 d later.

Genetic modification of T cells
The mouse SFG γ-retroviral m.uPAR-m28z plasmid has been described14. 
The mouse SFG γ-retroviral h.19-m28z plasmid14 was constructed by 
stepwise Gibson assembly (New England BioLabs) using the amino 
acid sequence for the scFv specific for human CD19 of the SFG-1928z 
backbone46 and cloned into the backbone of the SFG γ-retroviral 
m.uPAR-m28z plasmid14. In both constructs, the anti-mouse uPAR scFv 
or anti-human CD19 scFv is preceded by a mouse CD8A leader peptide 
and followed by the Myc-tag sequence (EQKLISEEDL), mouse CD28 
transmembrane and intracellular domain and mouse CD3z intracellular 
domain44,45. Plasmids encoding the SFGγ retroviral vectors were used 
to transfect gpg29 fibroblasts (H29) to generate VSV-G pseudotyped 
retroviral supernatants, which were used to construct stable retrovirus-
producing cell lines as described44,46.

Glucose tolerance testing
Blood samples from mice fasted for 8–12 h were collected at 0, 15, 30, 60 
and 120 min after intraperitoneal injections of glucose (Sigma-Aldrich; 
2 g per kg body weight for aging experiments and 1 g per kg body weight 
for HFD experiments). Insulin was measured from serum collected at 
the 0-min and 15-min time points. Concentrations were determined 
using the UltraSensitive Mouse Insulin ELISA kit (Crystal Chem, 90080).

Insulin tolerance testing
Blood samples from mice fasted for 4 h were collected at 0, 15, 30 and 
60 min after intraperitoneal injections of insulin (Humulin R; Eli Lilly; 
0.5 units per kg body weight).

Histological analysis
Tissues were fixed overnight in 10% formalin, embedded in paraffin 
and cut into 5-μm sections. Sections were subjected to H&E staining. 
Immunohistochemical staining was performed following standard pro-
tocols. The following antibodies were used: anti-mouse uPAR (AF534, 
R&D, DCL0521042; 1:50 dilution) and horse anti-goat IgG (30116; Vec-
tor Laboratories, ZH0526). Three fields per section were counted per 
sample with Fiji-ImageJ and averaged to quantify the percentage of 
uPAR-positive area per field. SA-β-gal staining was performed as pre-
viously described47 at a pH of 5.5 for mouse tissues. Specifically, fresh 
frozen tissue sections were fixed with 0.5% glutaraldehyde in PBS for 
15 min, washed with PBS supplemented with 1 mM MgCl2 and stained for 
5–8 h in PBS containing 1 mM MgCl2, 1 mg ml−1 X-gal, 5 mM potassium 
ferricyanide and 5 mM potassium ferrocyanide. Tissue sections were 
counterstained with eosin. Three fields per section were counted with 
ImageJ and averaged to quantify the percentage of SA-β-gal-positive 
area per field.

Immunofluorescence analysis
For the fluorescent SA-β-gal labeling, tissue slides were exposed to the 
C12RG substrate at 37 °C according to manufacturer’s instructions 
(ImaGene Red C12RG lacZ Gene Expression Kit, Molecular Probes, 
I2906)48,49. Subsequently, for immunofluorescence analysis, slides 
were fixed with 4% paraformaldehyde for 10 min at room temperature 
and regular immunofluorescence was performed following standard 
protocols and those previously described14. The following antibodies 
were used: anti-mouse uPAR uPAR (AF534,R&D, DCL0521042; 1:50 dilu-
tion) and anti-mouse F4/80 (Bio-Rad, CI:A3-1, 155529; 1:100 dilution). 
For quantification, five high-power fields per section were counted and 
averaged to quantify the percentage of SA-β-gal+, uPAR+ and F4/80+ per 
DAPI-positive cells. For colocalization analysis, Pearson coefficient was 
calculated using ImageJ.

Exercise capacity testing
Exercise capacity was assessed using a motorized treadmill (model 
1050 EXER 3/6; Columbus Instruments). For 3 d before testing, mice 
were acclimatized to the treadmill (the mice walked on the treadmill at 
10 m min−1 for 10 to 15 min per day). Following acclimatization, all mice 
underwent exercise capacity tests on consecutive days. Tests began 
with mice walking at 10 m min−1 with speed increased by 2 m min−1 every 
2 min until exhaustion (mice could no longer achieve treadmill running 
speed despite repeated encouragement). The primary end points were 
time to exhaustion and maximum speed.

Blood measurements
Complete blood counts with differentials were performed using an 
automated hematology analyzer (IDEXX Procyte DX). For serum chem-
istry, blood was collected in tubes containing a serum separator. The 
tubes were then centrifuged, and the serum was obtained for analysis. 
Serum chemistry was performed by the LCP on a Beckman Coulter 
AU680 analyzer (Beckman Coulter Life Sciences). For cytokine analysis, 
plasma was collected and samples were processed and measured by 
Eve Technologies.

Pathology
Mice submitted for postmortem examination were euthanized by CO2 
asphyxiation and cardiac exsanguination. Complete necropsies were 
performed at the Laboratory of Comparative Pathology (MSK, the 
Rockefeller University, and Weill Cornell Medicine). Representative sec-
tions were taken from all organ systems including heart, thymus, lungs, 
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esophagus, trachea, thyroid glands, spleen, pancreas, liver, gallbladder, 
kidneys, adrenal glands, stomach, duodenum, jejunum, ileum, cecum, 
colon, lymph nodes (mesenteric and submandibular), salivary glands, 
skin (trunk and head), urinary bladder, epididymides, testes, prostate, 
seminal vesicles, uterus, cervix, vagina, ovaries, oviducts, spinal cord, 
vertebrae, sternum, femur, tibia, stifle joint, skeletal muscle, nerves, 
skull, nasal cavity, oral cavity, teeth, ears, eyes, pituitary gland and 
brain. Sections were fixed in 10% neutral-buffered formalin, processed 
in alcohol and xylene, embedded in paraffin, sectioned (5 μm thick) 
and stained with H&E. The skull, spinal column, sternum and hindlimb 
were decalcified in a formic acid and formaldehyde solution (Surgipath 
Decalcifier I, Leica Biosystems) before processing. H&E-stained tissue 
sections were evaluated by a board-certified veterinary pathologist 
(S.E.C.). Representative images were captured using a brightfield BX45 
microscope with a DP26 camera and cellSens (version 1.18) Dimension 
software (Olympus America).

Statistical analysis
Data are presented as the mean ± s.e.m. Statistical analysis was per-
formed by Student’s t-test or Mann–Whitney test using Prism v9.3.1 
(GraphPad software). No statistical methods were used to prede-
termine sample size in the mouse studies, and no randomization 
method was used to allocate mice to experimental groups. Mouse 
conditions were observed by an operator who was blinded to the treat-
ment groups in addition to the main investigator who was not blind 
to group allocation. Pathological analysis and exercise testing studies 
were performed in a blinded fashion. Data analysis was not performed 
in a blinded fashion. Data analysis was based on objectively measur-
able data (cell count, blood tests). No data were excluded except for 
histological assessment of HFD experiments, where we excluded OCT 
cassettes of samples containing adipose tissue or pancreas that were 
folded and presented a morphology that did not allow for successful 
slide generation; these were not further processed. Data distribu-
tion was assumed to be normal, but this was not formally tested. No 
adjustment for multiple comparisons was performed. The rationale 
for this was that to increase the rigor of select analyses, two control 
groups were compared to the experimental group, but it could have 
been biologically possible to just have one control group. Thus, for 
any given endpoint, there were two pairwise comparisons: the experi-
ment group separately compared to each control. While two tests were 
evaluated, we only considered the analysis statistically significant if 
both tests had a P value less than 0.05. If only one of the two tests was 
significant, we did not claim the groups were significantly different; 
instead, we considered the analysis inconclusive and reported a trend. 
Viewing the analysis as significant only if both P values were less than 
0.05 preserves the family-wise error rate at less than 0.05. Figures 
were prepared using BioRender.com for scientific illustrations in 
Figs. 3a and 7a,j, GraphPad Prism v9.3.1, and Microsoft Excel v16.77 
and Illustrator CC 2022 (Adobe).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
scRNA-seq data are deposited in the Gene Expression Omnibus under 
accession number GSE243616. Data from the Tabula Muris Senis 
project18 were accessed through https://twc-stanford.shinyapps.
io/maca/. Human data from ref. 26 were accessed through https://
zenodo.org/records/7311202#.Y20ybezMIyl/. Source data are pro-
vided with this paper. Requests for materials should be addressed  
to C.A.

Code availability
All code is available at https://github.com/naikai/Amor_et_al_2023/.
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Extended Data Fig. 1 | Characterization of uPAR-positive cells in aging. a, RNA 
expression of Plaur in liver, adipose tissue (fat) and muscle of young (3 months) 
or old (21 months) mice. Data obtained from the Tabula Muris Senis project18.  
b, Quantification of immunohistochemical staining of mouse uPAR in liver,  
adipose tissue, muscle and pancreas from young (age 3 months) or old  
(age 20 months) mice (n = 3 per age). c, Hematoxylin and eosin staining and 
immunofluorescence staining of young (age 3 months n = 3 mice) or old  
(age 18–20 months n = 3 mice) livers. uPAR (green), β-gal (red), F4/80 (white), 
DAPI (blue). d, Percentage of SA-b-gal positive cells in young and aged livers in c. 
e, Hematoxylin and eosin staining and immunofluorescence staining of young 

(age 3 months n = 3 mice) or old (age 18–20 months n = 3 mice) pancreas. uPAR 
(green), β-gal (red), F4/80 (white), DAPI (blue). f, Percentage of SA-b-gal positive 
cells in young and aged livers in e. g,h, Correlation (Pearson’s R value) of β-gal and 
F4/80 co-staining, β-gal and uPAR co-staining or uPAR and F4/80 co-staining in 
aged livers (g) and aged pancreas (h). i,j, Percentage of β-gal positive cells that 
costain for F4/80, uPAR or uPAR and F4/80 in aged livers (i) and aged pancreas 
(j). Data are mean ± s.e.m (a,b,d,f-h); values are derived from two-tailed unpaired 
Student’s t-tests (a,b,d,f ) one-way ANOVA with multiple comparisons (g,h). 
Results are from 1 independent experiment (a-j).
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Extended Data Fig. 2 | Single cell profile of aged tissues. a, Dot plot showing 
expression of 34 signature genes across the 12 lineages of the liver. The size of 
the dots represents the proportion of cells expressing a particular marker, and 
the color scale indicates the mean expression levels of the markers (z-score 
transformed). b, Fractions of uPAR-positive and uPAR-negative cells in the 
various lineages in liver (n= the sequencing of 4 mice where 2 females were 
combined into one replicate and 2 males were combined into another replicate). 
Error bars represent s.d. c, Dot plot showing expression of 40 signature gene 
expressions across the 13 lineages of the adipose tissue. The size of the dots 
represents the proportion of cells expressing a particular marker, and the color 
scale indicates the mean expression levels of the markers (z-score transformed). 
d, Fractions of uPAR-positive and uPAR-negative cells in the various lineages 

in adipose tissue (n= the sequencing of 4 mice where 2 females were combined 
into one replicate and 2 males were combined into another replicate). Error bars 
represent s.d. e, Dot plot showing expression of 40 genes across the 12 lineages 
of the pancreas. The size of the dots represents the proportion of cells expressing 
a particular marker, and the color scale indicates the mean expression levels of 
the markers (z-score transformed). f, Fractions of uPAR-positive and uPAR-
negative cells in the various lineages in pancreas (n= the sequencing of 4 mice 
where 2 females were combined into one replicate and 2 males were combined 
into another replicate). Error bars represent s.d. Data are mean ± s.d.; p values 
are derived from two-tailed unpaired Student’s t-tests (b,d,f ). Results are from 1 
independent experiment (a-f ).
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Extended Data Fig. 3 | Characteristics of senescent uPAR-positive cells in 
aged tissues. a-c, Molecular Signature Database Hallmark 2020 signatures that 
are significantly enriched in uPAR positive cells vs uPAR negative cells of liver (a), 
adipose tissue (b) and pancreas (c). d-f, quantification of the proportion of uPAR 
positive and negative cells by cell type contributing to the respective senescence 
signature in Fig. 1h (d), Fig. 1j (e) and Fig. 1l (f ). g–o, UMAP visualizations with 

senescence signature scores17 in each cell indicated by the color scale. Below: 
quantification of the proportion of uPAR positive and negative cells contributing 
to the respective senescence signature in total (h,k,n) and by cell type (i,l,o). 
g,h,i, liver; j,k,l, adipose tissue; m,n,o; pancreas. Results are from 1 independent 
experiment with (n = the sequencing of 4 mice where 2 females were combined 
into one replicate and 2 males were combined into another replicate) (a-m).
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Extended Data Fig. 4 | See next page for caption.

http://www.nature.com/nataging


Nature Aging

Article https://doi.org/10.1038/s43587-023-00560-5

Extended Data Fig. 4 | Effect of uPAR CAR T cells on aged tissues.  
a-c, Quantification of SA-β-Gal–positive cells in adipose tissue, liver and pancreas 
20 days after cell infusion (n = 3 for UT; n = 3 for h.19-m.28z; n = 4 for m.uPAR-
m.28z). d-f, Quantification of uPAR-positive cells in adipose tissue, liver and 
pancreas 20 days after cell infusion (n = 3 per group). g-j, Percentage of dendritic 
cells and uPAR+ dendritic cells in the adipose tissue (g,h) or liver (i,j) 20 days  
after cell infusion (n = 3 for UT; n = 3 for h.19-m.28z; n = 4 for m.uPAR-m.28z).  

k-n, Percentage of macrophages and uPAR+ macrophages in the adipose tissue 
(k,l,) or liver (m,n) 20 days after cell infusion (n = 3 for UT; n = 3 for h.19-m.28z; 
n = 4 for m.uPAR-m.28z). o-r, Percentage of monocytes and uPAR+ monocytes in 
the adipose tissue (o,p) or liver (q,r) 20 days after cell infusion (n = 3 for UT; n = 3 
for h.19-m.28z; n = 4 for m.uPAR-m.28z). Results of 1 independent experiment  
(a-r). Data are mean ± s.e.m.; p values from two-tailed unpaired Student’s  
t-test (a-r).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | uPAR CAR T cells are not associated with signs of 
tissue damage in aged tissues and do not exacerbate spontaneous age-
related histological changes in lung, liver and kidneys. Mice received cell 
infusions at 18–20 months and were sacrificed 20 days after infusion of the 
indicated T cells. Sections were stained with hematoxylin and eosin. Aged 
mice showed mononuclear leukocytic aggregates composed predominantly 
of lymphocytes and plasma cells in tissues in an age dependent manner. These 
leukocytic aggregates were more frequently observed in tissues from uPAR-
m.28z CAR T- treated aged mice than tissues from control aged mice and were not 
associated with necrosis and/or degeneration in tissues from both experimental 
and control aged mice. These lymphocytic and plasmocytic aggregates in 
tissues are often observed in naïve aged mice and are considered spontaneous 
background findings in longitudinal aging studies in mice50,51. a, Representative 

sections of normal cerebral cortex and meninges at the level of the posterior 
hypothalamus (inset: hippocampus). b. Histology of normal cardiomyocytes 
and interstitium in myocardium (inset: ventricles and interventricular septum). 
c. Representative histology of normal lungs showed dense aggregates of 
lymphocytes and fewer plasma cells and macrophages around bronchioles 
or vasculature (inset: pulmonary lobes). d. The liver from aged mice showed 
accumulation of lymphocytic and histiocytic aggregates in portal to periportal 
regions (Inset: hepatic lobe). e. Histology of the kidneys showed accumulation of 
lymphocytes and plasma cells in the renal interstitium (n & o) and around blood 
vessels (inset: renal cortex, medulla, and pelvis). f. Representative sections of 
normal pancreatic acini (exocrine pancreas) and islets of Langerhans (endocrine 
pancreas; inset: pancreatic lobule). Images were captured at 4x (insets) and 40x 
magnifications. Results of 1 independent experiment (with n = 3 per group).
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Extended Data Fig. 6 | Effect of uPAR CAR T cells in young and old tissues.  
a-b, Mice received cell infusion at 3 months old. a, Levels of glucose before 
(0 min) and after intraperitoneal administration of glucose (2 g/kg) 2.5 months 
after cell infusion (n = 13 for untransduced T cells; n = 12 for h.19-m.28z and 
n = 13 for m.uPAR-m.28z). b, Area under the curve (AUC) representing the results 
from a. Each point represents a single mouse. c-d, Mice received cell infusion at 
18–20 months old. c, Levels of glucose before (0 min) and after intraperitoneal 

administration of insulin (0.5 units/kg body weight) 2.5 months after cell 
infusion (n = 10 for untransduced T cells and n = 10 for m.uPAR-m.28z). d, Area 
under the curve (AUC) representing the results from c. Each point represents 
a single mouse. Results of 2 independent experiments (a,b) or 1 independent 
experiment (c,d). Data are mean ± s.e.m.; p values from two-tailed unpaired 
Student’s t-test (b,d).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Profile of and long-term effects of uPAR CAR T cells 
in aging. a,b, Percentage of CD4+ or CD8+ cells among CD45.1+ T cells from the 
spleen (a) or liver (b) of 4-month-old or 20-month-old mice 20 days after cell 
infusion (n = 3 mice per age group for untransduced T cells [UT] and for h.19-
m.28z; n = 4 for m.uPAR-m.28z). c,d, Percentage of CD45.1+ T cells expressing 
differentiation markers CD62L and CD44 in the spleen (c) or liver (d) of 4-month-
old or 20-month-old mice 20 days after cell infusion (sample sizes as in a). e,f, 
Percentage of CD4+ or CD8+ cells among CD45.1+ T cells in the spleen (e) or liver 
(f) of 15-month-old mice 12 months after cell infusion (n = 3 mice per group). 
g,h, Percentage of CD45.1+ T cells expressing differentiation markers CD62L 
and CD44 on CD45.1+ T cells in the spleen (g) or liver (h) of 15-month-old mice 12 
months after cell infusion (n = 3 mice per group). i, Time to exhaustion in exercise 

capacity testing 12 months after cell infusion (n = 8 for untransduced T cells; n = 6 
for h.19-m.28z; n = 12 for m.uPAR-m.28z). j, Maximum speed (m/min) in capacity 
testing 12 months after cell infusion (sample sizes as in i). k-m, Quantification of 
SA-β-Gal–positive cells 12 months after cell infusion in (k) adipose tissue (n = 6 
for UT; n = 5 for h.19-m.28z; n = 6 for m.uPAR-m.28z); (l) liver (n = 6 for UT; n = 5 
for h.19-m.28z; n = 5 for m.uPAR-m.28z) and (m) pancreas (n = 6 for UT; n = 5 for 
h.19-m.28z; n = 6 for m.uPAR-m.28z). n-p, Quantification of uPAR-positive cells 
in (n) adipose tissue, (o) liver and (p) pancreas 12 months after cell infusion (n = 3 
per group). Results of 1 independent experiment (a-h, n-p) or 2 independent 
experiments (i-m). Data are mean ± s.e.m.; p values from two-tailed unpaired 
Student’s t-test (a-h, k-p) or two-tailed Mann Whitney test (i,j).
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Extended Data Fig. 8 | uPAR CAR T cells decrease senescent cell burden 
in therapeutic and preventive settings in high fat diet. a, Representative 
staining of SA-β-Gal after two months of high fat diet or normal chow diet. b-d; 
Quantification of SA-β-Gal–positive cells in pancreas, liver and adipose tissue 
after two months of high fat diet or normal chow diet (n = 3 for chow; n = 3 
HFD). e, Representative staining of SA-β-Gal 1 month after cell infusion in the 
experimental scheme depicted in Fig. 7a. f-h; Quantification of SA-β-Gal–positive 
cells in pancreas, liver and adipose tissue 1 month after cell infusion (n = 5 for 

UT; for m.uPAR-m.28z n = 5 in pancreas, n = 6 in liver and n = 3 in adipose tissue). 
UT, untransduced T cells. i, Representative staining of SA-β-Gal 3.5 months after 
cell infusion in the experimental scheme depicted in Fig. 7j. j-l, Quantification of 
SA-β-Gal–positive cells in pancreas, liver, and adipose tissue 3.5 months after cell 
infusion (UT n = 4 in pancreas, n = 5 in liver and adipose tissue; for m.uPAR-m.28z 
n = 5). Each panel shows results from 1 experiment. Data are mean ± s.e.m.; p 
values from two-tailed unpaired Student’s t-test (b-d; f-h; j-l).
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Extended Data Fig. 9 | Profile and persistence of uPAR CAR T cells in 
metabolic syndrome. T cells were assessed in spleen (a-d) and liver (e-h) 3.5 
months after cell infusion in the experimental scheme depicted in Fig. 7j.  
a, Percentage of CD45.1+ T cells in the spleen. b, Percentage of CD4+ cells among 
CD45.1+ T cells in the spleen. c, Percentage of CD8+ cells among CD45.1+ T cells 
in the spleen. d, Percentage of CD45.1+ T cells from the spleen expressing 

differentiation markers CD62L and CD44. e, Percentage of CD45.1+ T cells in the 
liver. f, Percentage of CD4+ cells among CD45.1+ T cells in the liver. g, Percentage 
of CD8+ cells among CD45.1+ T cells in the liver. h, Percentage of CD45.1+ T cells 
in the liver expressing differentiation markers CD62L and CD44. Results in each 
panel are from 1 experiment (n = 5 mice per group). Data are mean ± s.e.m.;  
p values from two-tailed unpaired Student’s t-test.
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Extended Data Fig. 10 | Gating strategies. a,b, Representative flow cytometry staining of m.uPAR-m.28z (a) or untransduced T cells (b) obtained from the  
spleens of mice 20 days after cell infusion as depicted in Fig. 5g. Shown are results of 1 independent experiment (n = 3 mice for untransduced T cells; n = 4 mice for 
m.uPAR-m.28z).
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