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Single cell and spatial transcriptomics
highlight the interaction of club-like cells
with immunosuppressive myeloid cells in
prostate cancer

A list of authors and their affiliations appears at the end of the paper

Prostate cancer treatment resistance is a significant challenge facing the field.
Genomic and transcriptomic profiling have partially elucidated the mechan-
isms through which cancer cells escape treatment, but their relation toward
the tumor microenvironment (TME) remains elusive. Here we present a
comprehensive transcriptomic landscape of the prostate TME at multiple
points in the standard treatment timeline employing single-cell RNA-sequen-
cing and spatial transcriptomics data from 120 patients. We identify club-like
cells as a key epithelial cell subtype that acts as an interface between the
prostate and the immune system. Tissue areas enriched with club-like cells
have depleted androgen signaling and upregulated expression of luminal
progenitor cell markers. Club-like cells display a senescence-associated
secretory phenotype and their presence is linked to increased polymorpho-
nuclear myeloid-derived suppressor cell (PMN-MDSC) activity. Our results
indicate that club-like cells are associated with myeloid inflammation pre-
viously linked to androgen deprivation therapy resistance, providing a ratio-
nale for their therapeutic targeting.

Approximately one in eight men develop prostate cancer (PCa)
during their lifetime. A favorable prognosis for localized tumors is
contrasted by the high mortality rate and challenging treatment
landscape of metastatic disease1. Genomics and transcriptomics data
from clinical samples have revealed the various aberrations under-
lying primary2,3 and treatment-resistant tumors4,5. Single-cell RNA-
sequencing (scRNA-seq) studies have elucidated the heterogeneity
inside these tumors, demonstrating that bulk-level investigations fail
to address their whole complexity6–9. While powerful, scRNA-seq is
hampered by a lack of spatial information making it a suboptimal
tool for observing interactions in the tumor microenvironment
(TME). A handful of studies have investigated the prostate TME in a
spatial context, reporting insights such as transcriptomic differences
between Gleason grades10, malignant cells in histologically benign
areas11, and immunosuppressive regulatory T-cell activity in

coordination with myeloid cells12, but have included only few
patients. The tumor cells’ interaction with the TME is a question of
high interest, as mounting evidence suggests that the TME actively
participates in the progression, treatment response, and metastasis
of various tumors13–15.

The scRNA-seq-based characterization of PCa has led to an
appreciation of epithelial cell type heterogeneity, identifying four
specialized subtypes: luminal, basal, hillock, and club cells16,17. Basal
and luminal epithelium arewell-described parts of the normal prostate
glandular structure. The luminal epithelium is regarded as the cellular
origin of prostate adenocarcinomas18,19. Hillock cells are a source of
discrepancy as they have been claimed to be found9,12,16,20 or to be
undiscernible17, depending on the study. In some cases, hillock and
club cells have been described together as intermediate epithelial cells,
reflecting the similarity of these cell populations7,21.
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The role of club cells in the prostate is poorly understood. Club
cells were originally described in the lung and characterized for their
expression of uteroglobin SCGB1A116,22. Initial observations noted that
club cells reside in the urethral epithelium and proximal prostate
ducts20,23. In contrast,more recent work has highlighted their presence
in the peripheral zone and inflamed regions of the prostate24. Intrigu-
ingly, human club cells have a transcriptomic profile similar to the
castration resistant luminal progenitor phenotype in mice25–27, raising
questions regarding their function in response to androgen depriva-
tion therapy (ADT) in humans.

Here we investigate the cellular composition of the prostate TME
and its response to androgen deprivation. We generate spatial tran-
scriptomics (ST) data from benign prostatic hyperplasia, treatment-
naïve primary PCa, neoadjuvant-treated PCa, and castration-resistant
PCa, representing a cross-section of cancer and benign prostate dis-
ease states together with TME from tissue adjacent to diseased areas.
We augment these ST data with publicly available scRNA-seq data,
analyzing high-resolution transcriptomics data from 120 patient sam-
ples in total. Our study provides an exhaustive map of the prostate
TME, ranging from benign tissue to treatment-naïve tumors and
advanced, treatment-resistant disease.

Results
We used the Visium Spatial Transcriptomics assay to generate data
from 80 fresh frozen tissue sections from 56 prostatectomy samples.
Processed samples contained 1835 tissue-covered spots, 3275 median
genes per spot, and 9549 median UMIs per spot on average (Supple-
mentary Data S1). These samples were divided into two groups, con-
stituting a discovery (48 sections from 48 patients) and a validation
cohort (32 sections from 8 patients, Fig. 1a). We used the discovery
cohort, consisting of treatment-naïve benign prostatic hyperplasia
(BPH) and prostate cancer (TRNA), neoadjuvant-treated prostate
cancer (NEADT), and castration-resistant prostate cancer tumors
(CRPC) to develop a computational pipeline for unsupervised
exploration of the prostate TME. We used the validation cohort of
treatment-naïve primary tumors to cross-compare results and test
hypotheses arising from the discovery cohort.

Sample-independent deconvolution of spatial transcriptomics
data with a single cell-derived cell state reference
The ST assay captures polyadenylated mRNAs onto 55 µm sized
uniquely barcoded spots. The number of individual cells and cell types
underlying this measured expression varies, presenting a major chal-
lenge in the analysis of these data28,29. A commonly adopted analysis
strategy uses scRNA-seq-derived transcriptomics profiles to infer the
most probable cell type compositions in each ST spot30. These inferred
cell type counts can further be used to divide tissue structures into
distinct, biologically meaningful regions31.

We re-analyzed previously published scRNA-seq datasets from
normal prostate tissue12,32, low- and high-grade primary tumors7,9,12,17,
and both locally recurrent andmetastatic castration-resistant prostate
cancer tumors6,8 to assemble a highly diverse cell-state reference likely
to capture a similar heterogeneous cell type distribution as the dis-
covery cohort. Using unsupervised clustering and non-negativematrix
factorization (NMF) to define tissue compositions across samples
(Supplementary Methods), we identified 26 cell states in 223,881 cells
across 98 samples and 64 patients (Supplementary Data S2). We used
this cell state reference to model the most probable cell state com-
position in spatial locations of our discovery cohort31.

Notable redundancy was still present in the inferred cell state
counts, as thirteen cell states with the lowest inferred abundance
accounted for just 6.7% of the total inferred cell counts (Supplementary
Data S3). To address this, we categorized individual spots into eight
categories based on their majority cell state contributors (Methods).

This resulted in commonly co-localized cell populations, hereon called
single-cell mapping-derived regions (SCM-regions, Fig. 1b).

Single-cell mapping-derived regions capture well-established
biology
We identified eight SCM regions across the discovery cohort. For each
sample, we compared the expression between regions to find differ-
entially expressed genes (One-vs-rest two-sided Wilcoxon rank-sum
test, Supplementary Data S4). We then determined genes that were
enriched among the overexpressed genes in each region (padj <0.05,
one-sided Fisher’s exact test), terming these region-specific markers
(Supplementary Data S5).

We annotated the SCM regions according to their region-specific
markers (Fig. 1c). The Tumor region overexpressed knownPCa-specific
markers such as AMACR33, PCA334, and PCAT1435. Canonical luminal cell
markersMSMB, ACPP, and CD38 were markers for the Luminal region,
while KRT5, KRT15, and TP63 were overexpressed in the Basal region.
The Immune region overexpressed chemokine receptors (CXCR3,
CXCR4), T cell- (TRBC1,TRBC2,CD3D), andB cell-specific (CD79A,CD22)
genes, as well as myeloid-lineage marker genes (LYZ, HLA-DRA, CD74,
C1QA, C1QB). Stromal regions Endothelium (VWF, EPAS1, EMP1),
Fibroblast (DCN, FBLN1, LUM), andMuscle (ACTA2, TAGLN,MYL9) were
similarly annotated. One SCM region overexpressed recently pro-
posed markers for club cells17,24 MMP7, PIGR, CP, and LTF, and was
consequently named the Club region.

Tumor, Luminal, Basal, Club, Immune, Fibroblast, and Muscle
regions were reproduced in the validation cohort following an iden-
tical computational workflow. We identified an additional region
undetected in the discovery cohort, expressing FOS, JUN, and EGR1
which we consequently named the Stressed luminal region. Both
Endothelium and the Stressed luminal regions were the smallest in their
cohorts representing 1.8% and 2.2% of all spots, respectively, and may
represent differences due to the nature of the composition of the two
cohorts. Each spot’s neighborhood was enriched for spots of the same
region in both cohorts (Supplementary Fig. S1).

SCM regions agreed with the pathologists’ assessment of sample
histology (Fig. 2a). To quantitively assess SCM region accuracy, we
categorized samples in the validation cohort into Low, Mid, and High
cancer % groups according to the fraction of spots classified as cancer
by the pathologists (Supplementary Fig. S1). Low cancer % samples had
a lower fraction of Tumor region spots thanMid cancer % (p = 1.2×10−4,
two-sided Wilcoxon rank-sum test) and High cancer % samples
(p = 1.1×10−4). High cancer % samples had lower Basal region fraction
thanMid cancer % (p = 3.5×10−3) or Low cancer % (p = 1.4×10−4) samples.
The fraction of Luminal (p = 1.6×10−2, Kruskal-Wallis test) and Muscle
(p = 2.9×10−4) regions also varied across sampling locations while the
fraction of Club, Immune, Stressed, and Fibroblast did not.

In the validation cohort, spots annotated as cancer with ISUP
gradegroupgradingwere enriched for theTumor region (p < 2.2×10−16,
two-sided Fisher’s exact test). 67% of the spots deemed normal by the
pathologists’were Luminal, Basal, or Club region spots (Fig. 2b). Of the
spots annotated as lymphocytes by the pathologists, 90%were labeled
as the Immune region. Similar concordance of histopathology anno-
tation and SCM regions was observed in the discovery cohort (Sup-
plementary Fig. S2).

Androgen deprivation promotes basal and club-like epithelial
phenotypes
To investigate the effect of ADT on gene expression, we analyzed the
epithelial SCM regions in pre- and post-treatment samples. We
observed decreased expression of androgen receptor-regulated (AR-
regulated) genes in the Tumor and Luminal regions following treat-
ment (Fig. 2c). These genes were expressed at low levels in the Basal
and Club regions in pre- and post-treatment samples. Conversely,
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canonical basal cell markers KRT5, KRT15, and TP63 were highly
expressed in the Basal and Club regions both pre- and post-treatment.

To test how treatment affected gene expression in the Club
region specifically, we calculated differentially expressed genes
between the Club regions of BPH, TRNA, NEADT, and CRPC sample
categories (Two-sided Wilcoxon rank-sum test, Supplementary Data

S6). The expression of AR-regulated genes ABCC4, KLK3, MAF, NKX3-
1, and PMEPA1 was lower in NEADT than TRNA samples (log2 fold-
change ≤ −1, padj <0.05, two-sided Wilcoxon rank-sum test). The
expression of canonical club cell marker LTF was likewise down-
regulated, while the expression of MMP7, PIGR, SCGB1A1, and
SCGB3A1 was unaffected. Mouse luminal progenitor marker genes36
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Fig. 1 | Integration of scRNA-seq and ST data reveals the organizational pat-
terns of the prostate TME. a Sample collection and analysis pipeline overview.
Brackets indicate the number of samples in each category. The cell state reference
was assembled from previously published single-cell RNA-sequencing data6–9,12,17,32.
Created in BioRender. Nykter, M. (2023) https://BioRender.com/n30i289 b) An
untreated primary tumor sample with eight SCM regions shown separately. Per-
centages represent the share of spots across the discovery cohort. For details on
how the SCM regions were calculated seeMethods. Scale bar is 2mm. c Expression
of cell type gene markers across the discovery cohort. Each region was tested for

differentially expressed genes individually in all samples. Dot size represents the
percentage of samples in which the gene was overexpressed (Wilcoxon rank-sum
test padj < 0.05 & log2 fold change≥ 1). Dot color represents the average log-fold
change. Region-specific marker, and their enrichment test padj (one-sided Fisher’s
exact test), and region-specific marker status are indicated in Supplementary Data
S5. The number of region-specific markers for each region: Tumor (569), Luminal
(1,776), Basal (46), Club (452), Immune (594), Endothelium (139), Fibroblast (294),
Muscle (280). SCM regions single-cell mapping-based regions.
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S100A11, WFDC2, KRT19, KLF5, ATP1B1, KRT4, and MET were region-
specific markers for the Club region, and their expression was simi-
larly unperturbed by treatment.

Compared to BPH, NEADT, and CRPC, the most significantly
upregulated DEGs in the TRNA Club region included AR-regulated
luminal cell markers such as KLK3, KLK2, PMEPA1, MSMB, and ACPP
(Supplementary Fig. S3). Club-like cells in tumor tissue have been
reported to have increased AR-signaling activity compared to healthy
prostate tissue17. The upregulation of activating transcription factors

FOS and JUN was also detected in TRNA samples when compared to
BPH samples, the expression of which has been previously linked to
epithelial cell stress response in tumor progression17.

The percentage of Tumor, Luminal, Basal, Immune, Endothelium,
and Fibroblast spots varied across the treatment categories (Fig. 2d).
TRNA (p = 7.2×10−3, two-sided Wilcoxon rank-sum test) and NEADT
(p = 4.5×10−3) samples had a higher percentage of tumor spots than
BPH samples. NEADT samples contained a lower percentage of Lumi-
nal region than TRNA samples (p = 9.2×10−4), while a higher proportion
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of Basal region (p = 4.4×10−4). These results indicate an increase in the
fraction of basal phenotype epithelial cells in response to ADT.

The Club region is tied to inflammation and senescence-
associated secretory phenotype
To elucidate the role of club-like cells in the prostate TME, we calcu-
lated spot-level gene set activity scores on prostate-specific16,37,38, pan-
cancer associated39,40, hallmark signaling41,42, and immune activity-
related gene sets12,43–46 and compared the scores across epithelial cell
regions (Supplementary Data S7). Club cell16, epithelial senescence
(EpiSen)40, IL6/JAK/STAT3 signaling, and high neutrophil-to-lymphocyte
ratio associated (high NLR-associated) gene signatures scored higher in
the Club region (p <0.05, two-sided independent samples t-test and
quantile thresholds, Fig. 3a). Genes related to androgen response

scored lower in the Club region, while the mouse luminal progenitor36,
lung club cell47, stem cell-like CRPC38, and PROSGenesis37 signatures
scored higher (Supplementary Fig. S4). Multiple inflammation-related
hallmark gene signatures scored higher in the Club region, including
inflammatory response, interferon gamma signaling, interferon alpha
signaling, and KRAS signaling UP (Supplementary Fig. S4).

The expression of high NLR-associated genes in CRPC primary
tumors correlates with the NLR measured from peripheral blood45.
High blood NLR is associated with shorter survival and treatment
resistance45,48,49. We detected a four-fold higher correlation between
the club cell and high NLR-associated signature scores in the Club
region compared to the other epithelial regions (Fig. 3b), despite no
overlap between the two signatures (Fig. 3c).We consolidated gene set
activity scores with an enrichment analysis between region-specific
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gene markers and these gene sets (Supplementary Fig. S5, Supple-
mentary Data S8). Genes of the high NLR-associated signature were
overrepresented among Club region markers (padj = 1.5×10−3, one-
sided Fisher’s exact test). One of the genes in high NLR-associated
signature, NFKB1, codes for nuclear factor κB (NF-κB). TNF-α-signaling
via NF-κB was among the most significantly enriched gene sets for the
Club region (padj = 2.7×10−26). The p53 pathway (padj = 2.3×10−7) hall-
mark gene set was uniquely enriched in the Club region, in line with its
putative senescent nature50.

Club region-specificmarkerswere enriched for genes that encode
for proteins whose secretion is increased in the senescence-associated
secretory phenotype51 (SASP) suggesting that club-like cells engage in
similar secretory activity (padj = 7.2×10−4). SASP is typified by the
secretion of chemokines, small molecules responsible for inducing
chemotaxis of immune cells that have a significant role in TME
organization52,53. We examined the expression of key chemokines
across all SCM regions in a pre- and post-treatment setting (Fig. 3d).
Neutrophil chemotaxis-inducing chemokines CXCL1 (padj = 1.5×10−13,
one-sided Fisher’s exact test), CXCL2 (padj = 7.4×10−13), and CXCL8
(padj = 1.7×10−5) were region-specificmarkers for the Club region, along
with CXCL16 (padj = 1.5×10−13) and CCL20 (padj = 2.0×10−4). Canonical
receptors of these chemokines53 were region-specific markers in the
Immune region: CXCR6 (padj = 2.7×10−2) for CXCL16 and CCR6 (padj =
4.1×10−4) for CCL20. While the sensitivity of ST was not sufficient to
detect significant levels of neutrophil chemotactic receptor CXCR2
expression, the elevated expression of its canonical ligands CXCL1,
CXCL2, and CXCL8 suggests that club-like cells partake in their
recruitment to the TME.

Areas proximal to the Club region have increased poly-
morphonuclear myeloid-derived suppressor cell activity
Overrepresentation analysis of Gene Ontology: Biological Process
(GO:BP) terms revealed enrichment of myeloid cell chemotaxis-
associated gene sets in the Club region (Fig. 4a). Lymphoid and mye-
loid immune cell activation-related processes were enriched in the
Immune region. Two gene sets indicating prostate-specific myeloid-
derived suppressor cell (MDSC) activity derived from mice43

(p = 4.3×10−7) and human12 (p = 2.0×10−6) were also enriched in the
Immune region (Supplementary Data S8). A CRISPR-Cas9 validated
signature of polymorphonuclear MDSC (PMN-MDSC)
immunosuppression46 was enriched in the Immune region
(p = 1.9×10−2), indicating anaccumulation of immunosuppressive PMN-
MDSCs in the prostate TME.

The fraction of Club region spots in a sample correlated posi-
tively with its PMN-MDSC activity score calculated from non-Club
region spots in both cohorts (Fig. 4b). Tumor region spots had a
higher PMN-MDSC activity score when proximal to Club region spots
(Fig. 4c). Similar results were acquired for three other MDSC sig-
natures (Supplementary Fig. S6). OneMDSC activity signature scored
higher in the recurrent samples (n = 20) than in non-recurrent sam-
ples of the validation cohort (n = 12) (p = 1.2×10−4, two-sided Wil-
coxon rank-sum test). PMN-MDSC activity scores didn’t differ
between the TRNA and NEADT groups (p ≥0.05, two-sided inde-
pendent samples t-test, Fig. 4d).

To validate the observed proximity between club-like cell pre-
valence and PMN-MDSC infiltration, we performed multiplex immu-
nohistochemistry staining of 16 primary untreated prostate tumor
tissue sections using antibodies against previously validated markers
for these cell types (Methods). From the resulting staining images, we
selected 101 approximately 3 mm2 regions of interest that were either
club-like negative (absent LTF staining, n = 54) or club-like positive
(moderate to strong LTF staining, n = 47) (Fig. 4e, Fig. 4f, Supplemen-
tary Fig. S7).We then trained a randomtrees cell classifier for seven cell
categories, including PanCK+LTF+/PIGR+ club-like cells24 and
CD45+CD66b+CD11b+CXCR2+ PMN-MDSCs45 (Fig. 4g, Methods).

Across all ROIs, the number of club-like-classified cells correlated
positively with the number of PMN-MDSC-classified cells (Fig. 4h). A
higher proportion of PMN-MDSCs was present in club-like positive
ROIs than in club-like negative ROIs (p = 1.7×10−8, two-sided Wilcoxon
rank-sum test) (Fig. 4i). No difference in the total number of detected
cells between club-like positive and negative ROIs was observed
(p = 0.23, two-sided Wilcoxon rank-sum test), while a greater number
of club-like cells was present in the club-like positive ROIs
(p = 3.0×10−15) (Supplementary Fig. S7). Taken together these results
demonstrate that the presence of club-like cells is strongly associated
with PMN-MDSC infiltration and immunosuppressive activity in the
prostate TME.

Club-derived ligand-receptor signaling activity is specific to the
interacting region
To elucidate the specificmolecular interactions occurring between the
Club andother regions,weperformed ligand-receptorbinding analysis
in the Club region interfaces (Supplementary Fig. S8, Supplementary
Data S9). Briefly, we surveyed spots of each region that were proximal
toClub region spots and tested for interactions between these two sets
(Methods).Wefiltered the interactions to those that hada ligand (from
Club to other regions) or receptor (from other regions to Club) over-
expressed in the Club region. We then tested for region interface-
specific enrichment by comparing the number of interfaces where a
specific ligand-receptor pair was active.

This analysis identified 142 unique ligand-receptor interactions
occurring at the Club region interface, 59 (41.5%) of which were enri-
ched at specific interfaces (padj <0.05, one-sided Fisher’s exact test).
Atypical chemokine receptor 1 (ACKR1)was themost common target for
neutrophil chemotaxis-inducing chemokines CXCL1, CXCL2, CXCL5,
CXCL6, and CXCL8 (Supplementary Fig. S8). The CXCL2 to ACKR1
interaction was enriched at the Club-Fibroblast interface (padj =
2.3×10−2). Dipeptidyl peptidase-4 (DPP4) was a unique target of CXCL2
and enriched at the Club-Luminal interface (padj = 5.7×108, Supple-
mentary Fig. S8). CCL20 and CCR6 formed an interaction that was
enriched in the Club-Immune interface (padj = 2.2×10−3).

The Club region overexpressed receptors with known oncogenic
properties (MET, EPHA2)54,55, inflammatory activities (CEACAM1,
PTGS2)56,57, and adhesive function (ITGA3, ITGA6) (Supplementary
Fig. S8). The Fibroblast-Club interface was enriched for MET interac-
tion with decorin (DCN, padj = 1.0×10−6) and hepatocyte growth factor
(HGF, padj = 5.6×10−5). EPHA2 was the target of multiple ephrin-family
ligands, of which EFNA1 and EFNA5 signaling interactions were enri-
ched at the Luminal (padj = 1.0×10−6) and Muscle (padj = 2.4×10−2)
interfaces, respectively. TP53 and PTGS2 interaction was enriched at
the Tumor-Club interface (padj = 3.0×10−2). An interaction between
Immune region-expressed CCL5 and Club region-expressed SDC1 was
the singlemost enriched interaction between these two regions (padj =
5.9×10−5). These results elucidate the region-specific signaling relied
upon by the club-like cells.

Club-like senescence is associated with immunosuppressive
PMN-MDSC activity in primary and metastatic tumors
We further examined the connection between the Club region SASP
andPMN-MDSCactivity.Wedetecteda significant overlapbetween the
EpiSen signature and the Club regionmarkers (p = 3.2×10−22, one-sided
Fisher’s exact test), as well as the EpiSen signature and PMN-MDSC
activity signature (p = 2.1×10−5, Fig. 5a).We termed the 26-gene overlap
between EpiSen and Club region markers club-like senescence.

Of the genes overlapping between these three signatures, we
found eleven genes to be expressed in the neutrophil and monocyte
populations of metastatic CRPC (mCRPC) scRNA-seq data58, suggest-
ing that similar senescence-driven processes could be taking place in
the metastatic tumor environment (Fig. 5b). To investigate, we gen-
erated ST data from four metastatic prostate cancer tumors collected
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from a pelvic lymph node, liver, pericardial region, and the subdural
region, each from a different patient (Methods, Supplementary Data
S10). We determined expression-based clusters for each sample
separately to find spots with similar expression and underlying cell
populations (Fig. 5c, Supplementary Fig. S9). We then performed
enrichment analysis and calculated gene set activity scores to deter-
mine whether any of these clusters corresponded to the club-like cell
population identified in primary tumors.

ClustersMet A1 (livermetastasis) andMet B5 (subduralmetastasis)
displayed elevated scores for the Club regionmarkers and the club-like

senescence signature (Fig. 5d). These tissue sites overexpressed genes
(log2 fold-change ≥ 1, padj < 0.05, two-sided Wilcoxon rank-sum test,
Supplementary Data S10) that were enriched for Club region markers
(Met A1 padj = 3.2×10−7 and Met B5 padj = 1.3×10−13, one-sided Fisher’s
exact test) and PMN-MDSC activitymarkers (Met A1 padj = 3.2×10−2,Met
B5 padj = 2.3×10−2, Fig. 5e). Genes overexpressed in the Met B1 and Met
B2 clusters were similarly enriched for the Club region markers (padj =
3.4×10−7 and padj = 1.5×10−4, respectively). Met B1 was enriched for all
five of the tested signatures, including EpiSen, club-like senescence, and
high NLR-associated genes. Canonical club cell marker MMP7 was
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overexpressed in Met B1 (log2 foldchange = 1.06, padj = 4.5×10−24) and
Met B5 (padj = 8.8×10−21). PIGR was similarly overexpressed in Met B5
(padj = 1.2×10−2). Other Club region markers overexpressed in Met B5
included CLDN1 (padj = 7.8×10−13), SCNN1A (padj = 2.9×10−6), and
TACSTD2 (padj = 8.5×10−61), all of which are exclusively expressed in
epithelial cells. These results suggest the presence of club-like cells in
metastatic prostate cancer tumors.

Club-like senescence and PMN-MDSC activity signature GSVA
scores correlated across untreated primary and mCRPC tumors in the
TCGA-PRAD and SU2C-PCF cohorts (Fig. 5g, h). The score of club-like
senescence signature also correlated with two other MDSC signatures,
and the high NLR-associated signature (Supplementary Fig. S10). Club-
like senescence score correlated negatively with AR-signaling in both
TCGA-PRAD (rs = −0.30, p = 1.2×10−12, two-sided Spearman correlation
test) and SU2C-PCF (rs = −0.28, p = 5.0×10−6) cohorts.

Finally, we generated pseudo-bulk expression profiles of the dis-
covery cohort ST samples to investigate how treatment affected the
expression of senescence-related genes. Hierarchical clustering of the
expression of AR-signaling and club-like senescence genes revealed
nested sample groups within the cohort (Fig. 5f). Altogether 16 NEADT
samples were characterized by decreased AR-signaling and increased
club-like senescence activity. Differential expression analysis between
the TRNA and NEADT groups revealed increased expression for genes
in the club-like senescence and the high NLR-associated signatures (log2
fold-change ≥ 1, padj < 0.05, two-sidedWald test, Fig. 5i, Supplementary
Data S11). None of the genes in these signatures were downregulated
post-treatment (padj ≥ 0.05, two-sided Wald test).

Discussion
We used spatial transcriptomics to explore the microenvironment of
benign, untreated, neoadjuvant-treated, and castration-resistant
prostate tumors. We used a single-cell expression reference to anno-
tate tissue regions across 146,780 spatially defined data points, which
not only recapitulated the histology annotated by pathologists but
also allowed for joint analysis across a large set of ST data. Our analysis
pipeline is inspired by NMF-based approaches that have captured
recurrent gene expression programs across different tumor
types39,40,59 emphasizing gene set variation within individual samples
before cross-sample integration. The advantage of our analysis is that
we avoid batch effect issues related to commonly used clustering
workflows60,61, resulting in an unbiased cell-state reference.

Herewe report that club-like cells have upregulated expression of
genes encoding for molecules secreted in SASP51, including TME-
altering proteases cathepsin β (CTSB), stromelysin-2 (MMP10), and
urokinase (PLAU), insulin-like growth factor-binding protein 3 (IGFBP3),
and intercellular adhesion molecule 1 (ICAM1). Furthermore, club-like
cells display elevated expression of similarly SASP-associated myeloid
cell chemotaxis-inducing chemokines51,53 CXCL1, CXCL2, CXCL3, CXCL8,
and CCL20, as well as the transmembrane chemokine CXCL16. In a

prostate-specific context, the expression of CXCL1, CXCL2, and CXCL8
is independently predictive of poor overall survival inmetastatic CRPC
patients45. High CCL20 expression in the prostate is associated with
more aggressive disease62 and its blockade slows tumor progression in
mice12. In vitro studies have shown that CXCL16 expression induces
tumor cell and mesenchymal stem cell migration, promoting cancer
metastasis to the bone63,64. We observed upregulated CXCL12 expres-
sion in the Fibroblast region, and high CXCR4 and CXCR6 expression in
the Immune region, all of which have been indicated as key molecules
in possible metastasis mechanisms acting through CXCL1664.

Increased cytokine signaling activity in the Club region is in line
with reports that club-like cells are enriched in proliferative inflam-
matory atrophy (PIA)24,65,66. PIA has been regarded as a potential pre-
cursor for prostate cancer65, with DNA damage resulting from
cytokine-induced oxidative stress reported as one possible
mechanism14,67. We found increased expression of PIA gene markers66

KRT5, KRT8, and MET, and PIA-associated club-like cell gene
markers17,24 CP,MMP7, LTF, and PIGR in the Club region. Inflammation-
related molecular signaling routes IL6/JAK/STAT3, IFNγ response, and
TNFα signaling via NFκB also had increased activity in the Club region.
Similar inflammatory signaling activity has been reported in club-like
cells of histologically benign glands proximal to invasive cribriform
carcinoma or intraductal carcinoma-enriched regions9. Inflammation-
associated low-CD38 expressing luminal cells have previously been
associated with biochemical recurrence68, whereas high IFNγ signaling
is associated with worse outcomes in high-risk localized disease69.
These results indicate that the club-like cells are interchangeably
linked with inflammation in the prostate TME.

Our findings corroborate a link between club-like cells and the
luminal progenitor phenotype reported in mice27. Luminal progenitor
cells are an inherently castration-resistant cell population in themouse
prostate25,70 that have also been proposed as a possible cellular origin
of prostate cancer71. These cells are mainly present in the proximal
region of the prostatic duct, with scattered cells found in the distal
lobes20,23,72. The previously described transcriptomic similarity of the
mouseprogenitor andhuman club-like cells is supportedbyour data36.
Our analysis also shows that the Club region is unperturbed by ADT,
indicating that human club-like cells are similarly resistant to castra-
tion. High expression of transcription factors SOX9, KLF5, and ELF3 in
the Club region is also indicative of the stem-like characteristics of
these cells73.

Finally, we postulate a connection between club-like cells and
clinically significant immunosuppression. Chronic inflammation in the
prostate facilitates cancer progression and results in the accumulation
of pathologically activated neutrophils or PMN-MDSCs14,46,74. Immu-
nosuppressive PMN-MDSCs are a driver of CRPC that can reactivate
androgen signaling through IL-23 secretion43. In general, tumor sites
contain expanded PMN-MDSC populations compared to healthy
tissue74,75, and the inhibition of their chemotactic receptor CXCR2 can

Fig. 4 | Club-like cell enriched regions are associated with increased myeloid-
derived suppressor cell infiltration. a GO:BP term enrichments for genes with
upregulated expression in the Club (top) and Immune (bottom) regions. One-sided
Fisher’s exact test was used. b Correlation between Club region fraction and PMN-
MDSC activity scores in pseudo-bulk for the discovery (left) and the validation
(right) cohorts. Two-sided Spearman correlation coefficient and p-value are shown.
Error bands in light grey span the 95% confidence interval calculated using a
bootstrap. BPH: benign prostatic hyperplasia (n = 4), TRNA: treatment-naïve pros-
tate cancer (n = 17); NEADT: neoadjuvant-treated prostate cancer (n = 22); CRPC:
Castration-resistant prostate cancer (n = 5). Low cancer% n = 11,Mid cancer % n = 11,
High cancer % n = 10. c PMN-MDSC activity score in treatment-naïve spots grouped
according to their proximity to the Club region. Asterisks indicate two-sided
independent samples t-test significance levels (p <0.05) and effect size: *70th
percentile <mean; **80th percentile <mean; ***90th percentile <mean. Club region

(n = 278), proximal Tumor (n = 687), distant Tumor (n = 8751).dViolin plots of gene
set activity scores across all regions in treatment-naïve (n = 36,198) and
neoadjuvant-treated (n = 59,259) samples. Asterisks are the same as in (c). e A
representative immunostained prostate tissue section (total n = 16) with selected
regions of interest (ROIs). f Representative images of club-like positive (n = 47) and
club-like negative (n = 54) ROIs corresponding to those annotated in (e). g A
representative image of a club-like positive ROI (n = 47) with a three-colour stain
showing CD66b+CD11b+CXCR2+ PMN-MDSCs. Arrows point to example cases. Scale
bars in white are 500 μm in each panel. h Scatterplot of log-transformed club-like
cell and PMN-MDSC cell counts. Each dot represents a ROI (n = 101). Correlation
coefficient, p-value, and error bands were calculated the same as in (b). i Violinplot
of PMN-MDSC percentage of all detected cells in club-like negative (n = 54) and
club-like positive (n = 47) ROIs. A Wilcoxon rank-sum test p-value is shown.
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Fig. 5 | Club-like senescence is associatedwith immunosuppressive PMN-MDSC
activity in primary and metastatic tumors. a Venn diagram showing overlaps
between PMN-MDSC activity, epithelial senescence, and club-region upregulated
gene sets. b Dot plot of normalized gene expression in metastatic castration-
resistant prostate cancer samples. Data and clusters as reported in He et al. 202158.
c Expression-based clustering overlaid on two prostate cancer metastasis ST sam-
ples.dCluster-specific gene set scores inMET A (n = 2190) andMET B (n = 2346) ST
spots. The dashed linemarks the overall scoremedian. Asterisks indicate two-sided
independent samples t-test p-value (p <0.05) and effect size (*cluster 30th per-
centile > overall median; **cluster 20th percentile > overall median; *cluster 10th

percentile > overall median) e Log-transformed overrepresentation padj among
each clusters overexpressed genes. One-sided Fisher’s exact test was used. f Scaled

gene expression of pseudo-bulk spatial transcriptomics samples. g, h Score cor-
relation for the Club-like senescence and PMN-MDSC activity signatures in TCGA
PRAD (n = 551) and SU2C (n = 266) cohorts. Two-sided Spearman correlation
coefficient andp-value are shown. Error bands in light grey span the95%confidence
interval calculated using a bootstrap. i Violin plot of normalized gene expression in
pseudo-bulk spatial transcriptomics samples. Asterisks indicate differential gene
expression test significance levels between treatment-naïve (n = 17) and
neoadjuvant-treated (n = 22) prostate cancer samples (*padj <0.05, **padj < 0.01,
***padj < 0.001, two-sided Wald test). PMN-MDSC: polymorphonuclear myeloid-
derived suppressor cell; TRNA: treatment-naïve protate cancer (n = 17), NEADT:
neoadjuvant-treated prostate cancer (n = 22); CRPC castration-resistant prostate
cancer (n = 5), BIC bicalutamide, GOS goserelin, DEG degarelix, APA apalutamide.
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reverse castration resistance45. We show that club-like cells have ele-
vated expression of canonical neutrophil chemokines and that their
presence is associated with increased PMN-MDSC activity in primary
tumors. Furthermore, we identify club-like cell populations in meta-
static prostate cancer tumors, expanding their relevance outside the
primary tumor setting.

Taken together, our analysis highlights club-like cells as a key TME
constituent that is associated with PMN-MDSC infiltration. The com-
bination of their ability to persist throughout ADT and to induce PMN-
MDSC chemotaxis implicates them as a contributor to treatment
resistance. Our findings warrant further research into how club-like
cells contribute to prostate cancer initiation, progression, and resis-
tance to therapy.

Methods
Sample collection
This study was carried out in compliance with all relevant ethical
regulations and guidelines. The collection of patient samples was
approved by the local ethical committees in Tampere University
Hospital, Universitaire Ziekenhuizen KU Leuven, St. Olav’s Hospital in
Trondheim, and the Johns Hopkins Hopsital. For the discovery cohort,
a total of 48 prostatectomy samples were collected at Tampere Uni-
versity Hospital (37) and UZ Leuven (11). Freshly frozen prostate tissue
samples from 37 patients of different disease stages, including benign
prostatic hyperplasia (n = 4), treatment-naïve (n = 17) andneoadjuvant-
treated primary PCa (n = 11), locally recurrent castration-resistant
prostate cancer (CRPC, n = 5) were obtained from Tampere University
Hospital (Tampere, Finland) and utilized for the analysis. The
neoadjuvant-treated samples were collected as part of clinical trial
NCT00293696 evaluating the molecular effects of anti-androgen and
chemical castration treatment76.The use of clinical material was
approved by the Ethics Committee of the TampereUniversity Hospital
and the National Authority for Medicolegal Affairs. For prospective
sample collection, written informed consent was obtained from all the
subjects. 11 freshly frozen neoadjuvant-treated primary PCa samples
from radical prostatectomies samples of 11 patients were collected at
the Universitaire Ziekenhuizen KU Leuven as part of clinical trial
NCT0308011677. The mean age of discovery cohort cancer patients at
surgery was 63 years (range: 33–79), the mean ISUP grade group was
2.7 (range: 1–5), and themeanpre-operation bloodPSA level 12.7 ng/ml
(range: 3.2–111) (Supplementary Data S1).

Of themetastatic prostate cancer samples used in this study, three
were acquired as part of the Johns Hopkins Medicine Institutional
Review Board-approved (NA_00003925) Project to ELIminate lethal
CANcer (PELICAN) from patients who provided written informed
consent. One sample was acquired under Tampere University Hospital
Ethics Committee approval R19074 from a patient who had provided
written informed consent.

For the validation cohort, 8 freshly frozen prostate tissue spe-
cimens were collected frompatients with untreated primary PCa who
had given informed written consent before undergoing radical
prostatectomy at St. Olav’s Hospital in Trondheim between 2008 and
2016. This research received approval from the regional ethical
committee of Central Norway (identifier 2017/576) and adhered to
both national and EU ethical regulations. The mean age at surgery
was 59 years (range: 53–73), themean ISUP gradewas 3.4 (range: 2–5)
and the mean pre-operation blood PSA level was 20.1 ng/ml (range:
9.6–45.9). Three patients remained relapse-free for >10 years fol-
lowing surgery, while five patients experienced relapse with con-
firmed metastasis within three years. For each patient, two samples
with cancerous tissue (Cancer), one sample with noncancerous
morphology close to the cancerous region (Field effect), and one
sample with noncancerous morphology distant from the cancerous
area (Normal) were sectioned. In total, 32 samples (no relapse n = 12,
relapse n = 20) were collected.

Spatial transcriptomics assay
For the discovery cohort and the metastatic tumor samples, tissue
sections were profiled for spatial transcriptomics using the Visium
Spatial Gene Expression Reagent Kit protocol from 10x Genomics
(CG000239, Rev F, 10x Genomics). The tissues were cryosectioned
with Cryostat SLEEMEV+ at 10 µm thickness to the Visium spatial gene
expression slide, fixed in ice-cold 100%methanol for 30min at −20 °C,
andhematoxylin and eosin (H&E) stainingwasdonemanuallybasedon
the Methanol Fixation, H&E Staining & Imaging for Visium Spatial
Protocols (CG000160, Rev D, 10x Genomics). The capture areas were
imaged individually using Hamamatsu NanoZoomer S60 digital slide
scanner. Sequencing library preparation was performed according to
the Visium Spatial Gene Expression user guide (CG000239 Rev F, 10x
Genomics) using a 20-minute tissue permeabilization time. Sequen-
cing was done on the Illumina NovaSeq 6000 sequencer at Novogene
Company Limited, (Cambridge, UK) or CeGaT GmbH (Tübingen, Ger-
many) sequencing facilities, aiming at aminimumof 50,000 read pairs
per tissue-covered spot (55 µm; 1–10 cells) as recommended by the
manufacturer.

For the validation cohort samples, 10 µm-thick tissue sections
were cut at−20 °C using aCryostarNX70 (ThermoFisher), placed onto
the Visium slides, and processed following the manufacturer’s proto-
col. Before extracting RNA, tissue sections were treated with 100%
methanol, stained with H&E, and scanned digitally at 20x magnifica-
tion. RNA was isolated by treating the tissue sections with a permea-
bilization agent for 12minutes. Themost effective extraction time had
been established earlier using the Visium Spatial Tissue Optimization
Slide & Reagent kit (10X Genomics). Following this, a second strand
mix was introduced to generate a complementary strand, after which
cDNA was amplified using real-time qPCR. The resulting amplified
cDNA library was quantified using the QuantStudio™ 5 Real-Time PCR
System (Thermo Fisher) via qPCR, and the cDNA libraries were pre-
served at −20 °C until needed for subsequent experiments.

Histopathology evaluation
For the discovery cohort samples that were generated at Tampere, a
board-certified uropathologist (T.M.) assigned individual spots into
one of 9 categories (Gleason 5, Gleason 4,

Gleason 4 cribriform, Gleason 3, Atrophy, Prostatic Intraepithelial
Neoplasia (PIN), Inflammation, Benign, and Stroma) using Loupe
Browser version 6.0 (10x Genomics). Quality control of selected sam-
ples and qualitative assessment of histological concordance with SCM
regions was performed by an additional pathologist (C.T.A.P.).

For the validation cohort, two experienced uropathologists (T.V.
and Ø.S.) independently evaluated the H&E-stained sections from all
32 spatial transcriptomics samples in QuPath (version 0.2.3). They
annotated cancer areas according to the International Society for
Urological Pathology (ISUP) Grade Group system and also identified
aggregates of lymphocytes. For the downstream data analysis, a con-
sensus pathology annotation was reached in agreement with both
pathologists. Gleason scores were transformed into ISUP grade groups
(ISUP1–5). Cancer areas with uncertain grading were annotated as
ISUPX (indecisive between ISUP3 and ISUP5) and ISUPY (indecisive
between ISUP1 and ISUP4). Other section annotations included non-
cancerous glands, stroma, and stroma with higher levels of lympho-
cytes (referred to as ‘lymphocyte-enriched stroma’). A detailed
description of how histology annotations in QuPath were converted
into spot-wise histology classes is given elsewhere78.

Spatial transcriptomics data preprocessing
Libraries were sequenced with NovaSeq 6000 PE150. Images of each
capture area were transformed from ndpi to tiff-format at the 20x
zoom level using ndpi2tiff v1.879. Tissue alignment masks were created
using Loupe Browser v4.2.0. Read alignment to GRCh38 and transcript
counting were performed using spaceranger v1.1.0, where the tiff
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image and the tissue alignment masks were also used as input. The
results were read into Python 3.7 using scanpy.read_visium (scanpy
v1.9.1). For each sample individually, genes present in less than 5 spots
and spots with less than 500 UMIs were discarded using scanpy.pp.-
filter_genes and scanpy.pp.filter_cells, respectively. Transcript counts
were normalized using the single-cell integration benchmark (scib,
v1.1.1) implementation of the scran method by running
scib.preprocessing.normalize80,81.

Single-cell reference mapping
The scRNA-seq cell-state reference created from publicly available
data6–9,12,17,32 (Supplementary Methods) was transformed into a map-
pable reference using cell2location.models.RegressionModel (cell2lo-
cation v0.1.3) with the dataset of origin used as batch_key, cell-state
annotation as labels_key, and original sample used as categorical_cov-
ariate_key. The regression was performed on unnormalized gene
counts. The model was trained for 250 epochs on an NVIDIA Tesla
V100 16GB graphics processing unit (GPU). RegressionMode-
l.export_posterior with parameters num_samples: 1000, batch_size:
2500 on the same GPU was used to export the posterior distribution.
From these distributions, the mean expression of each gene in each
cell state (means_per_cluster_mu_fg) was used for mapping. A single
cell2location model was created using cell2location.models.Cell2loca-
tion by concatenating the untransformed (raw) ST data gene counts
and setting the parameter batch_key as the sample identifier. The
model was trained on the same NVIDIA Tesla V100 GPU with the fol-
lowing parameters: N_cells_per_location = 21, detection_alpha = 20,
max_epochs = 30000, batch_size = 34000, train_size = 1. The inferred
cell abundances for each spatial location across all samples were
exported using export_posterior with num_samples = 1000.

Defining single-cell mapping-based regions
The 5th quantile of each cell state’s abundance distribution (q05_cel-
l_abundance_w_sf) was used as the inferred cell count as per the
developer’s instructions (Supplementary Fig. S11). These cell abun-
danceswere treated as an alternative to gene counts,where the feature
space was defined as 26 cell states. We determined that not all cell
states were relevant in terms of tissue organization, and set out to
define the smallest number of regions that were 1) ubiquitous, i.e.
present in all sample classes, and 2) biologically meaningful.

Non-negativematrix factorization (NMF) as implemented in scikit-
learn v1.1.3was used to reduce the feature space. Iterative NMFwith an
increasing number of components (5 to 12) was run, stopping at the
highest number of components where each factor had a unique cell
state as the highest-contributing feature. The iterationwith the highest
number of components where no single cell state was the highest
contributor in multiple components was chosen as the optimal itera-
tion (n_components = 8, Supplementary Fig. S12). Each ST data point
was then categorized according to its highest contributing compo-
nent, resulting in eight regions across the whole ST dataset (Supple-
mentary Fig. S13).

Region-specific gene markers
For each sample individually, scanpy’s rank_genes_groups functionwith
method = ‘wilcoxon’ was used to calculate differentially expressed
genes between the SCM regions, where the expression of each gene in
each region was compared to the baseline expression of that gene in
other regions of the sample. Regions with fewer than 10 members and
genes of ribosomal or mitochondrial origin were excluded from the
analysis. For each region, genes with log fold change ≥ 1 and padj < 0.05
were considered differentially expressed. A one-sided Fisher’s exact
test was then used to test whether a gene was enriched as amarker for
a specific region. The test was carried out by comparing the number of
instances where the gene was differentially expressed in a region of
interest against the number of instances where the gene was

differentially expressed in any other region. Genes with padj < 0.05
were considered as region-specific markers. A single gene could be
considered a region-specific marker for multiple regions.

Neighborhood enrichment analysis
Sample-specific region neighborhood enrichments were calculated
using squidpy v1.2.3. First, a neighborhood graph was built for each
sample individually using squidpy.gr.spatial_neighborswith parameters
coord_type = ”grid”, n_neigh= 6, and n_rings = 3. squidpy.gr.nhoo-
d_enrichment was then used with default parameters to calculate the
enrichment scores. This score is basedon apermutation testwhere the
associationbetween regions is estimatedby comparing the true region
layout to a randomly sampled configuration. Enrichment scores of
missing regions were set to 0 in each sample. The mean of all scores
was calculated across all samples to get dataset-wide enrichment
scores.

Spot-level gene set activity scoring and gene set enrichment
analysis
Scanpy implementation of Seurat’s scoring method in scanpy.tl.scor-
e_genes was used to score 154 gene sets on the normalized data82,83.
Parameter values ctrl_size: 50, n_bins: 25 were used. No genes were
excluded from the control gene pool. Only genes that passed the
quality control were included in calculating the score for each sample.
A one-sided Fisher’s exact test was used to perform gene set enrich-
ment analysis of customgene sets on the region-specific genemarkers.
Gene sets with padj < 0.05 were considered enriched. g:Profiler was
used to perform enrichment analysis of region-specific gene markers
on the Gene Ontology: Biological Process database84,85.

Region fraction and gene signature score correlation analysis
Each sample’s un-normalized transcript counts were concatenated
while leaving out spots that were annotated as the region of interest.
Genes expressed in fewer than 10 samples were discarded, after which
the data was normalized using scanpy.pp.normalize_total and log-
transformed with scanpy.pp.log1p. Gene set activity scores were cal-
culated identically to the spot-level scores. A Spearman correlation
coefficient and a corresponding p-value were calculated for the Club
region fraction and gene set scores in each sample.

Multiplex immunohistochemistry staining
Formalin-fixed paraffin-embedded prostate tumor tissue blocks from
16 patients were obtained from Tampere University Hospital (Tam-
pere, Finland). The use of clinical material was approved by the Ethics
Committee of the Tampere University Hospital and the National
Authority for Medicolegal Affairs. For prospective sample collection,
written informed consent was obtained from all the subjects. The
tumor samples were fixed in 4% phosphate-buffered formaldehyde
and processed into paraffin blocks. 5μm thick sections were stained
with in-house multiplex-IHC protocol based on Multiple Iterative
Labeling by Antibody Neodeposition (MILAN)86. Tissue sections were
treated with heat-induced epitope retrieval (HIER) using Tris-HCl
buffer (pH 9.0) prior to antibody labeling. Antigens were stained with
anti-PIGR 1:500 (Sigma-Aldrich, HPA012012), anti-LTF 1:500 (Sigma-
Aldrich, HPA059976), anti-Pan Keratin (AE1/AE3/PCK26) (Roche, 760-
2135), anti-CP 1:150 (HPA001834, Sigma-Aldrich), anti-CD66b 1:50
(Novus Biologicals, NB100-77808), anti-CXCR2 1:2000 (Abcam,
ab245982), anti-CD45 1:100 (Cell Signaling Technology, #13917) and
anti-CD11b 1:100 (Cell Signaling Technology, #49420). Detection was
done with fluorescently labeled secondary antibodies Goat anti-Rabbit
IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor
Plus 647 (Invitrogen, A32733), Goat anti-Mouse IgG (H + L) Cross-
Adsorbed Secondary Antibody, Alexa Fluor 750 (Invitrogen, A21037)).
Nuclei were stained with DAPI (4’,6-Diamidino-2-Phenylindole, Dihy-
drochloride) (Invitrogen, D1306) and slides were mounted using
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Fluorescence Mounting Medium (Agilent, S3023). The staining result
was scanned using NanoZoomer S60 (Hamamatsu) whole-slide scan-
ner. The fluorescent multiplex-IHC staining was followed by an HE-
staining on the same tissue section. HE-staining was done using Leica
ST5010 Autostainer XL and the slides were mounted using DPX
mountant (Sigma-Aldrich, 44581).

Multiplex immunohistochemistry image processing
The DAPI staining images were overlaid (registered) utilizing in-house
scripts and Python package VALIS (version 1.0.0rc13)87. DAPI staining
image of LTF-panCK was used as a fixed reference for each staining
round. The transformationmatrices obtained from thesewere applied
to each matching staining image to obtain the same orientation.
Regions of interest (ROI) were obtained by selecting representative
areas from the tissue and re-selecting those from subsampled (long
side 2048px) images using Qupath (version 0.4.4) TMA dearrayer
(width 120px)88. These obtained coordinates were transformed to
original images to crop full-size ROIs.

Images were processed into hyperstacks using Fiji-ImageJ version
v1.5389. Image analysis of registered images was performed in Qupath
version 0.4.4. Individual cells were segmented from images using
Stardist (model dsb2018_heavy_augment)90. Cell classifier of seven cell
categories (Club-like cells (panCK + , LTF+ and/or PIGR+ ), CP+ Club-
like cells (panCK + , CP + ), panCK+ cells (panCK+ ), Granulocytes
(CD45 + , CD11b + , CD66b + ), MDSCs (CD45+ , CD11b + , CD66b + ,
CXCR2 + ), Other cells (negative to all except DAPI) and Other immune
cells (CD45 + ) (Rtrees) was created based on 26 training images
selected from across samples in the staining cohort and applied to a
total of 101 ROIs. Classifier results were exported as cell annotation
counts and further analyzed in Python.

Region interface annotation and ligand-receptor analysis
Spatial neighborhood graphs were constructed for each sample as in
the neighborhood enrichment analysis. With the Club region selected
as the region of interest, the region identities of neighboring spots
were surveyed to find another spot of the same annotation. This was
done to exclude sporadic individual spots without neighbors of the
same region. All non-club spotswithin 3 rings (300μm)of two ormore
adjacent Club region spots were then annotated as ‘proximal’, and all
spots further than 3 rings away as ‘distant’. The previously calculated
gene set scores in these spot categories were then compared across all
samples. 6 samples with fewer than 10 Club region-annotated spots
were excluded from the analysis. For region-specific interactions
(Fig. 4d), the clause that a spot was to have a neighboring spot of the
same region identity was included for the interacting region. Addi-
tionally, each spot was required to have at least 2 spots from the
interacting cluster within three spots distance to be considered as
interacting. At least 10 spots from both regions were required in a
sample for it to be used in the ligand-receptor interaction analysis.
Interfaces between Club and Endothelium were not considered for
downstream analysis due to low prevalence (6).

squidpy’s implementation of the CellphoneDB91 method was used
to calculate ligand-receptor interactions at the sample level. squid-
py.gr.ligrec was run between interface-labeled spots using parameter
settings complex_policy=’all’, threshold =0.01, and n_perms = 1000.
Ligand-receptor pairs with padj < 0.05were considered active andwere
used in the overrepresentation analysis. Interactions with fewer than 3
literature references in the OmniPath92 database were discarded.

Analysis of metastatic CRPC scRNA-seq data
Single-cell gene expression data of mCRPC samples were downloaded
from a public repository (https://singlecell.broadinstitute.org/single_
cell/study/SCP1244/transcriptional-mediators-of-treatment-
resistance-in-lethal-prostate-cancer). TPM normalized counts were

matched with the cell identity annotation as defined in the original
analysis. Gene expression was visualized using scanpy.pl.dotplot.

Spatial transcriptomics data analysis of metastatic prostate
cancer tumors
Three of the four metastatic tissue samples studied were collected as
part of the PELICAN integrated clinical-molecular autopsy study of
lethal prostate cancer (PELICAN)93. Subjects A14 (Met A), A3 (Met C),
and A16 (Met D) included in this study provided written informed
consent to participate in the Johns Hopkins Medicine IRB-approved
study between 1995 and 2005. The mean age of the study subjects at
the time of diagnosis of prostate cancer was 61 years.

Sample GP12 (Met B) was collected as a part of the Geoprostate
study, where patients newly diagnosed with PrCa electing radical
prostatectomy (RP) with 20% or greater preoperative risk of pelvic
lymph node metastasis were eligible to participate under Tampere
University Hospital Ethics Committee approval R19074 and provided
written informed consent to participate in the study94.

ST libraries were generated identically to the discovery cohort
primary tumor samples generated in Tampere. An identical data pre-
processing procedure was followed. Expression clusters were gener-
ated using the standard clustering workflow outlined in the scanpy
(v1.9.1) manual. The data was scaled using scanpy.pp.scale(), followed
by scanpy.tl.pca(), scanpy.pp.neighbors(), and scanpy.tl.leiden() with a
parameter setting resolution =0.5. All the other parameters were used
in their standard setting. Differential gene expression analysis was
performed by running scanpy.tl.rank_genes_groups() on the leiden
clusters and with method=wilcoxon. Overexpressed genes in each
cluster were defined as having padj <0.05 (two-sided Wilcoxon rank-
sum test) and log2 fold-change ≥ 1. These genes were used as input in
the enrichment analysis. Gene set activity scores were calculated for
each data point with sc.tl.score_genes() on the normalized but unscaled
expression counts.

Analysis of bulk transcriptomics data
TCGA-PRADexpression datawasdownloaded fromapublic repository
(https://tcga.xenahubs.net). FPKM normalized polyA mRNA expres-
sion data of the SU2C-PCF mCRPC cohort was downloaded from a
public repository (https://www.cbioportal.org/study/summary?id=
prad_su2c_2019)95. gseapy.gsva (v1.1.0) was used to calculate GSVA
scores for each sample96. Possible gene overlap was removed when
calculating scores for the correlation analysis of two signatures.

Spatial transcriptomics pseudo-bulk GSVA and differential
expression analysis
Each ST sample’s un-normalized transcript counts were concatenated
to form pseudo-bulk expression matrices. Gene counts were TPM
normalized and gseapy.gsva (v1.1.0) was used to calculate GSVA scores
for each sample. Possible gene overlap was removed when calculating
scores for the correlation analysis of two signatures. Differential
expression analysis between TRNA and NEADT samples was per-
formed using pydeseq2 (v0.4.4)97 with TRNA used as the
reference level.

Statistics and reproducibility
scipy.stats v1.9.3 and statsmodels.stats.multitest v0.13.5 in python 3.8
was used to perform statistical testing and multiple testing correc-
tions, respectively. The Benjamini-Hochberg method was used to
adjust p-values for multiple testing. No statistical method was used to
predetermine sample size. No data were excluded from the analysis,
except for the spatial transcriptomics data points thatdid notmeet the
criteria for minimum number of UMIs or genes. The experiments were
not randomized. The investigators were not blinded to allocation
during experiments and outcome assessment.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed spatial transcriptomics data presented in this study,
excluding the validation cohort, have been deposited in the Gene
Expression Omnibus (GEO) archive under accession identifier
GSE278936. The raw sequencing data are available from the authors, but
restrictions apply to the availability of thesedata. Data canbe sharedwith
qualified researchers in accordance with the conditions of ethical
approvals and informed consent to use these data in research of pro-
static diseases. All handling of these data must be in compliance with
GDPRandother relevant data protection regulations upon completionof
material transfer agreement with respective data controllers’ informa-
tion. Data access requests will be processed at the earliest convenience.
Data access will be granted for one year. Validation cohort spatial tran-
scriptomics data is available in the European Genome-Phenome Archive
(EGA) under accession identifier [EGAD50000000603]. The data is
available under restricted access to ensure compliance with ethical and
legal standards, including GDPR and approval from the Regional Com-
mittee for Medical Research in Norway. Access will be granted to
researchers who meet these requirements, and they must sign a Data
Access Agreement (DAA). To obtain access, contact the Data Access
Committee (DAC) at NTNU, who will facilitate the process and provide
access through the FEGA Norway node or HUNT Cloud once the DAA is
completed. The DAA will be processed at the earliest convenience. The
single cell RNA-sequencing datasets used in this study6–9,12,17,32 are avail-
able on GEO under accession numbers GSE137829, GSE141445,
GSE176031, GSE185344, and GSE181294, the Sequence Read Archive
(SRA) under accession number PRJNA699369 and on https://singlecell.
broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-
of-treatment-resistance-in-lethal-prostate-cancer58. The bulk RNA-
sequencing data used in this study is available for download on https://
tcga.xenahubs.net (TCGA)3 and on https://www.cbioportal.org/study/
summary?id=prad_su2c_201993. The remaining data are available within
the Article, Supplementary Information or Source Data file. Source data
are provided with this paper.

Code availability
Code used for data analysis in this manuscript is available on https://
github.com/akiviaho/ST-prostate.

References
1. Attard, G. et al. Prostate cancer. Lancet 387, 70–82 (2016).
2. Taylor, B. S. et al. Integrative genomic profiling of human prostate

cancer. Cancer Cell 18, 11–22 (2010).
3. Cancer Genome Atlas Research Network. The molecular taxonomy

of primary prostate cancer. Cell 163, 1011–1025 (2015).
4. Gundem, G. et al. The evolutionary history of lethal metastatic

prostate cancer. Nature 520, 353–357 (2015).
5. Robinson, D. et al. Integrative clinical genomics of advanced

prostate cancer. Cell 161, 1215–1228 (2015).
6. Dong, B. et al. Single-cell analysis supports a luminal-

neuroendocrine transdifferentiation in human prostate cancer.
Commun. Biol. 3, 778 (2020).

7. Chen, S. et al. Single-cell analysis reveals transcriptomic remo-
dellings in distinct cell types that contribute to human prostate
cancer progression. Nat. Cell Biol. 23, 87–98 (2021).

8. Cheng, Q. et al. Pre-existing castration-resistant prostate cancer-
like cells in primary prostate cancer promote resistance to hormo-
nal therapy. Eur. Urol. 81, 446–455 (2022).

9. Wong, H. Y. et al. Single cell analysis of cribriform prostate cancer
reveals cell intrinsic and tumor microenvironmental pathways of
aggressive disease. Nat. Commun. 13, 1–21 (2022).

10. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes
reveal an unexplored landscape of heterogeneity.Nat. Commun. 9,
2419 (2018).

11. Erickson, A. et al. Spatially resolved clonal copy number alterations
in benign and malignant tissue. Nature 608, 360–367 (2022).

12. Hirz, T. et al. Dissecting the immune suppressive human prostate
tumor microenvironment via integrated single-cell and spatial
transcriptomic analyses. Nat. Commun. 14, 1–20 (2023).

13. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor
progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

14. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A.
M. The inflammatory microenvironment and microbiome in pros-
tate cancer development. Nat. Rev. Urol. 15, 11–24 (2017).

15. Yuan, S., Almagro, J. & Fuchs, E. Beyond genetics: driving cancer
with the tumour microenvironment behind the wheel. Nat. Rev.
Cancer 24, 274–286 (2024).

16. Henry, G. H. et al. A cellular anatomy of the normal adult human
prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

17. Song, H. et al. Single-cell analysis of human primary prostate can-
cer reveals the heterogeneity of tumor-associated epithelial cell
states. Nat. Commun. 13, 141 (2022).

18. Wang, X. et al. A luminal epithelial stemcell that is a cell of origin for
prostate cancer. Nature 461, 495–500 (2009).

19. Wang, Z. A., Toivanen, R., Bergren, S. K., Chambon, P. & Shen, M.M.
Luminal cells are favored as the cell of origin for prostate cancer.
Cell Rep. 8, 1339–1346 (2014).

20. Joseph, D. B. et al. Urethral luminal epithelia are castration-
insensitive cells of the proximal prostate. Prostate 80,
872–884 (2020).

21. Germanos, A. A. et al. Defining cellular population dynamics at
single-cell resolution during prostate cancer progression. Elife 11,
e79076 (2022).

22. Manyak, M. J., Kikukawa, T. & Mukherjee, A. B. Expression of a
uteroglobin-like protein in human prostate. J. Urol. 140,
176–182 (1988).

23. Crowley, L. et al. A single-cell atlas of the mouse and human
prostate reveals heterogeneity and conservation of epithelial pro-
genitors. Elife 9, (2020).

24. Huang, F. W. et al. Club-like cells in proliferative inflammatory
atrophy of the prostate. J. Pathol. 261, 85–95 (2023).

25. Karthaus, W. R. et al. Regenerative potential of prostate lumi-
nal cells revealed by single-cell analysis. Science 368,
497–505 (2020).

26. Chan, J. M. et al. Lineage plasticity in prostate cancer depends on
JAK/STAT inflammatory signaling. Science 377, 1180–1191 (2022).

27. Baures, M. et al. Prostate luminal progenitor cells: from mouse to
human, from health to disease. Nat. Rev. Urol. 19, 201–218 (2022).

28. Lu, S., Fürth, D. & Gillis, J. Integrative analysis methods for spatial
transcriptomics. Nat. methods 18, 1282–1283 (2021).

29. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue archi-
tecture using spatial transcriptomics. Nature 596, 211–220 (2021).

30. Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat. Methods 19, 662–670 (2022).

31. Kleshchevnikov, V. et al. Cell2locationmaps fine-grained cell types
in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

32. Chen, Y. et al. Single-cell transcriptomics reveals cell type diversity
of human prostate. J. Genet. Genomics 49, 1002–1015 (2022).

33. Rubin, M. A. et al. α-methylacyl coenzyme A racemase as a tissue
biomarker for prostate cancer. JAMA 287, 1662–1670 (2002).

34. Hessels, D. et al. DD3PCA3-based molecular urine analysis for the
diagnosis of prostate cancer. Eur. Urol. 44, 8–16 (2003).

35. Shukla, S. et al. Identification and Validation of PCAT14 as Prog-
nostic Biomarker in Prostate Cancer. Neoplasia 18, 489–499
(2016).

Article https://doi.org/10.1038/s41467-024-54364-1

Nature Communications |         (2024) 15:9949 13

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE278936
https://ega-archive.org/studies/EGAS50000000413
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137829
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141445
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176031
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185344
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181294
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA699369/
https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-treatment-resistance-in-lethal-prostate-cancer
https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-treatment-resistance-in-lethal-prostate-cancer
https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-mediators-of-treatment-resistance-in-lethal-prostate-cancer
https://tcga.xenahubs.net
https://tcga.xenahubs.net
https://www.cbioportal.org/study/summary?id=prad_su2c_2019
https://www.cbioportal.org/study/summary?id=prad_su2c_2019
https://github.com/akiviaho/ST-prostate
https://github.com/akiviaho/ST-prostate
www.nature.com/naturecommunications


36. Baures, M. et al. Transcriptomic signature and growth factor reg-
ulation of castration-tolerant prostate luminal progenitor cells.
Cancers 14, 3775 (2022).

37. Taavitsainen, S. et al. Single-cell ATAC and RNA sequencing reveal
pre-existing and persistent cells associated with prostate cancer
relapse. Nat. Commun. 12, 5307 (2021).

38. Tang, F. et al. Chromatin profiles classify castration-resistant pros-
tate cancers suggesting therapeutic targets. Science 376,
eabe1505 (2022).

39. Barkley, D. et al. Cancer cell states recur across tumor types and
form specific interactions with the tumor microenvironment. Nat.
Genet. 54, 1192–1201 (2022).

40. Gavish, A. et al. Hallmarks of transcriptional intratumour hetero-
geneity across a thousand tumours. Nature 618, 598–606 (2023).

41. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0.
Bioinformatics 27, 1739–1740 (2011).

42. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. Usa. 102, 15545–15550 (2005).

43. Calcinotto, A. et al. IL-23 secreted by myeloid cells drives
castration-resistant prostate cancer. Nature 559, 363–369 (2018).

44. Alshetaiwi, H. et al. Defining the emergence of myeloid-derived
suppressor cells in breast cancer using single-cell transcriptomics.
Sci. Immunol. 5, eaay6017 (2020).

45. Guo, C. et al. Targeting myeloid chemotaxis to reverse prostate
cancer therapy resistance. Nature https://doi.org/10.1038/s41586-
023-06696-z (2023).

46. Wang, C. et al. CD300ld on neutrophils is required for tumour-
driven immune suppression. Nature 621, 830–839 (2023).

47. Han, G. et al. An atlas of epithelial cell states and plasticity in lung
adenocarcinoma. Nature https://doi.org/10.1038/s41586-024-
07113-9 (2024).

48. Templeton, A. J. et al. Simple prognostic score for metastatic
castration-resistant prostate cancer with incorporation of
neutrophil-to-lymphocyte ratio. Cancer 120, 3346–3352 (2014).

49. Valero, C. et al. Pretreatment neutrophil-to-lymphocyte ratio and
mutational burden as biomarkers of tumor response to immune
checkpoint inhibitors. Nat. Commun. 12, 729 (2021).

50. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in Context. Cell 170,
1062–1078 (2017).

51. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The
senescence-associated secretory phenotype: the dark side of
tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

52. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov.
12, 31–46 (2022).

53. Mempel, T. R., Lill, J. K. & Altenburger, L. M. How chemokines
organize the tumour microenvironment. Nat. Rev. Cancer 24,
28–50 (2024).

54. Zhang, Y. et al. Function of the c-Met receptor tyrosine kinase in
carcinogenesis and associated therapeutic opportunities. Mol.
Cancer 17, 45 (2018).

55. Xiao, T. et al. Targeting EphA2 in cancer. J. Hematol. Oncol. 13,
114 (2020).

56. Liu, B., Qu, L. & Yan, S. Cyclooxygenase-2 promotes tumor growth
and suppresses tumor immunity. Cancer Cell Int. 15, 106 (2015).

57. Dankner, M., Gray-Owen, S. D., Huang, Y.-H., Blumberg, R. S. &
Beauchemin, N. CEACAM1 as a multi-purpose target for cancer
immunotherapy. Oncoimmunology 6, e1328336 (2017).

58. He, M. X. et al. Transcriptional mediators of treatment resistance in
lethal prostate cancer. Nat. Med. 27, 426–433 (2021).

59. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recur-
ring programs of cellular heterogeneity. Nat. Genet. 52,
1208–1218 (2020).

60. Stein-O’Brien, G. L. et al. Enter the matrix: factorization uncovers
knowledge from omics. Trends Genet. 34, 790–805 (2018).

61. Kotliar, D. et al. Identifying gene expression programs of cell-type
identity and cellular activity with single-cell RNA-Seq. Elife 8,
e43803 (2019).

62. Kfoury, Y. et al. Human prostate cancer bone metastases have an
actionable immunosuppressivemicroenvironment.Cancer Cell 39,
1464–1478.e8 (2021).

63. Lu, Y. et al. CXCL16 functions as a novel chemotactic factor for
prostate cancer cells in vitro. Mol. Cancer Res. 6, 546–554 (2008).

64. Jung, Y. et al. Recruitment of mesenchymal stem cells into prostate
tumours promotes metastasis. Nat. Commun. 4, 1–11 (2013).

65. De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Pro-
liferative inflammatory atrophy of the prostate: implications for
prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

66. van Leenders, G. J. L. H. et al. Intermediate cells in human prostate
epithelium are enriched in proliferative inflammatory atrophy. Am.
J. Pathol. 162, 1529–1537 (2003).

67. Mani, R. S. et al. Inflammation-induced oxidative stress mediates
gene fusion formation in prostate cancer. Cell Rep. 17,
2620–2631 (2016).

68. Liu, X. et al. Low CD38 identifies progenitor-like inflammation-
associated luminal cells that can initiatehumanprostate cancer and
predict poor outcome. Cell Rep. 17, 2596–2606 (2016).

69. Attard, G. et al. Clinical testing of transcriptome-wide expression
profiles in highrisk localized andmetastatic prostatecancer starting
androgen deprivation therapy: an ancillary study of the STAMPEDE
abiraterone Phase 3 trial. Res Sq https://doi.org/10.21203/rs.3.rs-
2488586/v1 (2023).

70. Karthaus,W. R. et al. Identification ofmultipotent luminal progenitor
cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

71. Guo, W. et al. Single-cell transcriptomics identifies a distinct lumi-
nal progenitor cell type in distal prostate invagination tips. Nat.
Genet. 52, 908–918 (2020).

72. Kwon, O.-J., Zhang, L. & Xin, L. Stem cell antigen-1 identifies a dis-
tinct androgen-independent murine prostatic luminal cell lineage
with bipotent potential. Stem Cells 34, 191–202 (2016).

73. Bian, X. et al. Integration analysis of single-cell multi-omics reveals
prostate cancer heterogeneity. Adv. Sci. https://doi.org/10.1002/
advs.202305724 (2024).

74. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived sup-
pressor cells in the era of increasingmyeloid cell diversity.Nat. Rev.
Immunol. 21, 485–498 (2021).

75. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as
regulators of the immune system. Nat. Rev. Immunol. 9,
162–174 (2009).

76. Lehmusvaara, S. et al. Chemical castration and anti-androgens
induce differential gene expression in prostate cancer. J. Pathol.
227, 336–345 (2012).

77. Devos, G. et al. ARNEO: A randomized phase II trial of neoadjuvant
degarelix with or without apalutamide prior to radical prosta-
tectomy for high-risk prostatecancer.Eur. Urol.83, 508–518 (2023).

78. Andersen, M. K. et al. Spatial transcriptomics reveals strong asso-
ciation between SFRP4 and extracellular matrix remodeling in
prostate cancer. Commun. Biol. 7, 1462 (2024).

79. Deroulers, C. et al. Analyzing huge pathology images with open
source software. Diagn. Pathol. 8, 92 (2013).

80. Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to nor-
malize single-cell RNA sequencing data with many zero counts.
Genome Biol. 17, 75 (2016).

81. Luecken, M. D. et al. Benchmarking atlas-level data integration in
single-cell genomics. Nat. Methods 19, 41–50 (2021).

82. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

83. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial
reconstruction of single-cell gene expression data.Nat. Biotechnol.
33, 495–502 (2015).

Article https://doi.org/10.1038/s41467-024-54364-1

Nature Communications |         (2024) 15:9949 14

https://doi.org/10.1038/s41586-023-06696-z
https://doi.org/10.1038/s41586-023-06696-z
https://doi.org/10.1038/s41586-024-07113-9
https://doi.org/10.1038/s41586-024-07113-9
https://doi.org/10.21203/rs.3.rs-2488586/v1
https://doi.org/10.21203/rs.3.rs-2488586/v1
https://doi.org/10.1002/advs.202305724
https://doi.org/10.1002/advs.202305724
www.nature.com/naturecommunications


84. Ashburner, M. et al. Gene ontology: tool for the unification of biol-
ogy. TheGeneOntologyConsortium.Nat.Genet. 25, 25–29 (2000).

85. Kolberg, L. et al. g:Profiler-interoperable web service for functional
enrichment analysis and gene identifier mapping (2023 update).
Nucleic Acids Res. 51, W207–W212 (2023).

86. Cattoretti, G., Bosisio, F. M., Marcelis L. & Bolognesi M. M. Multiple
Iterative Labeling by Antibody Neodeposition (MILAN) PROTOCOL
(Version 5) available at Protocol Exchange (2019).

87. Gatenbee, C. D. et al. Virtual alignment of pathology image series
for multi-gigapixel whole slide images. Nat. Commun. 14,
4502 (2023).

88. Bankhead, P. et al. QuPath: Open source software for digital
pathology image analysis. Sci. Rep. 7, 16878 (2017).

89. Schindelin, J. et al. Fiji: an open-source platform for biological-
image analysis. Nat. Methods 9, 676–682 (2012).

90. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection
with star-convex polygons. arXiv [cs.CV] (2018).

91. Efremova,M., Vento-Tormo,M., Teichmann, S. A. &Vento-Tormo, R.
CellPhoneDB: inferring cell–cell communication from combined
expression of multi-subunit ligand–receptor complexes. Nat. Pro-
toc. 15, 1484–1506 (2020).

92. Türei, D. et al. Integrated intra- and intercellular signaling knowl-
edge for multicellular omics analysis. Mol. Syst. Biol. 17,
e9923 (2021).

93. Jasu, J. et al. Combined longitudinal clinical and autopsy phenomic
assessment in lethal metastatic prostate cancer: recommendations
for advancing precision medicine. Eur. Urol. Open Sci. 30,
47–62 (2021).

94. Nurminen, A. et al. Cancer origin tracing and timing in two high-risk
prostate cancers using multisample whole genome analysis: pro-
spects for personalized medicine. Genome Med. 15, 82 (2023).

95. Abida,W. et al. Genomic correlates of clinical outcome in advanced
prostate cancer. Proc. Natl Acad. Sci. 116, 11428–11436 (2019).

96. Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for
performing gene set enrichment analysis in Python. Bioinformatics
39, btac757 (2023).

97. Muzellec, B., Teleńczuk, M., Cabeli, V. & Andreux, M. PyDESeq2: a
python package for bulk RNA-seq differential expression analysis.
Bioinformatics 39, btad547 (2023).

Acknowledgements
The authors acknowledge the Biocenter Finland (BF) and Tampere
Genomics Facility for their service. The authors wish to acknowledge
CSC–IT Center for Science, Finland, for computational resources. The
results published here are in part based upon data generated by The
Cancer Genome Atlas project (dbGaP Study Accession:
phs000178.v9.p8) established by theNCI andNHGRI. Information about
TCGA and the investigators and institutions who constitute the TCGA
research network can be found at http://cancergenome.nih.gov. Tissue
samples of the validation were collected and stored by Biobank1, St.
Olav’s Hospital. Tissue sectioning, staining, and scanning were per-
formed by or in collaboration with the Histology lab at the Cellular &
Molecular Imaging Core Facility at NTNU, while RNA isolation and
sequencing were carried out at the Genomics Core Facility at NTNU. We
thank Sari Toivola, Päivi Martikainen, Hanna Selin, and Maria Annala for
their assistance in laboratory procedures. The authors wish to thank all
participating patients and their families. A.K. has received funding from
the Tampere University Doctoral School, the Finnish Cultural Founda-
tion, and the Cancer Foundation Finland. C.T.A.P. has received funding
from the Jean Shanks Foundation and the Pathological Society Clinical
PhD Fellowship. S.T. has been funded by the Tampere University Doc-
toral School and the Relander Foundation. E.A. has received funding
from the FinnishCultural Foundation. T.M. has received funding from the
Finnish Cancer Institute, Helsinki University Hospital State Funding

(VTR), the Sigrid Juselius Foundation, and the Cancer Foundation Fin-
land. M.B.T., M.K.A., S.Krossa., M.B.R., M.W., E.M., G.F.G., and A.S. have
collectively benefited from funding provided by the European Research
Council (ERC) under the Horizon 2020 program, the Liaison Committee
between theCentral NorwayRegional Health Authority (RHA) andNTNU,
the Norwegian Cancer Society, and the Terje Eugen Johnsen funds.
K.J.R. has been funded by the Cancer Foundation Finland, the Sigrid
Jusélius Foundation, the Emil Aaltonen Foundation, the Competitive
State Research Financing of the Expert Responsibility area of Tampere
University Hospital, the Väre Research Foundation, and the Aamu
Pediatric Cancer Foundation. A.U. has received support from the
Academy of Finland (project no. 349314), the Cancer Foundation Fin-
land, the Norwegian Cancer Society (project no. 198016-2018 & project
no. 333723-2023), and the Tampere Institute for Advanced Study. M.N.
has been funded by the Academy of Finland Center of Excellence pro-
gram (project no. 312043), the Cancer Foundation Finland, the Sigrid
Juselius Foundation, and the Competitive State Research Financing of
the Expert Responsibility area of Tampere University Hospital.

Author contributions
K.J.R., A.U., and M.N. supervised this work. A.K., K.J.R. A.U., and M.N.
conceived and designed the analysis. A.K. designed the figure panels
and wrote the original manuscript draft. S.K.E., H.M.L.K., M.K.A., M.H.,
A.M.T., E.M., K.V., and S. Kint performed experimental studies. A.K.,
A.M.T., I.S., S.T., O.H., M.I., M.W., A.S., S. Krossa, T.H., E.A., J.K., and
M.B.R. performed computational analyses and contributed data analysis
tools. C.T.A.P., T.T., T. Viset, Ø.S., and T.M. performed histopathology
annotation. X.S., A.G., W.D., T.L.J.T., T.M., G.S.B., S.J., J.V.S., T. Visakorpi,
G.A., F.C., T. Voet., K.J.R., and M.B.T. contributed data and provided
resources for the study. A.K., S.K.E., H.M.L.K., M.K.A., A.G., C.T.A.P.,
M.M., I.H., G.F.G., M.B.R., T.M., A.E., L.L., G.S.B., I.G.M., S.J., T.M., G.A.,
F.C., T. Visakorpi, K.J.R., M.B.T., A.U., and M.N. reviewed and edited the
manuscript. All authors reviewed and approved the final version of the
manuscript.

Competing interests
C.T.A.P.’s employermaygain commercially from licensing data toArtera
AI. G.A. received personal fees, grants, and travel support from Janssen
and Astellas Pharma; personal fees or travel support from Pfizer,
Novartis/AAA, Bayer Healthcare Pharmaceuticals, AstraZeneca, and
Sanofi-Aventis; in addition, G.A.’s former employer, The Institute of
Cancer Research, receives royalty income from abiraterone and G.A.
receives a share of this income through the Institute’s Rewards to Dis-
coverers Scheme. G.A. has received research funding (institutional)
from Janssen, Astellas Pharma, and Novartis. All other authors declare
no potential conflicts of interest.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-54364-1.

Correspondence and requests for materials should be addressed to
Alfonso Urbanucci or Matti Nykter.

Peer review information Nature Communications thanks Arianna Cal-
cinotto, Yunshun Chen, and Li Xin for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-54364-1

Nature Communications |         (2024) 15:9949 15

http://cancergenome.nih.gov
https://doi.org/10.1038/s41467-024-54364-1
http://www.nature.com/reprints
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Antti Kiviaho 1,2, Sini K. Eerola1,2, Heini M. L. Kallio 1,2, Maria K. Andersen 3,4, Miina Hoikka 1,2, AliisaM. Tiihonen 1,2,
Iida Salonen 1,2, Xander Spotbeen5,6, AlexanderGiesen 7,8, Charles T. A. Parker9, Sinja Taavitsainen 1,2, Olli Hantula1,2,
Mikael Marttinen1,2,10,11, Ismaïl Hermelo1,2, Mazlina Ismail 9, Elise Midtbust3,4, Maximilian Wess 3,4, Wout Devlies 7,12,
Abhibhav Sharma 13, Sebastian Krossa 3,14, Tomi Häkkinen1,2, Ebrahim Afyounian 1,2, Katy Vandereyken6,15,
Sam Kint 6,15, Juha Kesseli 1,2, Teemu Tolonen 2,16, Teuvo L. J. Tammela1,17, Trond Viset18, Øystein Størkersen18,
Guro F. Giskeødegård 4,13, Morten B. Rye4,19, Teemu Murtola1,2, Andrew Erickson20,21,22, Leena Latonen 23,
G. Steven Bova 1,2, Ian G. Mills22,24, Steven Joniau 7,8, Johannes V. Swinnen 5,6, Thierry Voet 6,15,
Tuomas Mirtti20,21,25, Gerhardt Attard 9,26, Frank Claessens 12, Tapio Visakorpi1,2,27, Kirsi J. Rautajoki 1,2

May-Britt Tessem 3,4, Alfonso Urbanucci 1,2,28,29 & Matti Nykter 1,2,29

1Faculty of Medicine andHealth Technology, Tampere University, Tampere, Finland. 2Prostate Cancer ResearchCenter, Tampere University and TAYSCancer
Center, Tampere, Finland. 3Department of Circulation andMedical Imaging, Norwegian University of Science and Technology, Trondheim, Norway. 4Clinic of
Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. 5Laboratory of LipidMetabolism andCancer, KU Leuven and Leuven Cancer
Institute (LKI), Leuven, Belgium. 6KULeuven Institute for SingleCellOmics (LISCO), KULeuven, Leuven,Belgium. 7Department ofUrology,UniversityHospitals
Leuven, Leuven, Belgium. 8Department of Development and Regeneration, KU Leuven, Leuven, Belgium. 9University College London Cancer Institute,
London, UK. 10European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany. 11European Molecular Biology
Laboratory, Genome Biology Unit, Heidelberg, Germany. 12Molecular Endocrinology Laboratory, Cellular and Molecular Medicine, KU Leuven,
Leuven, Belgium. 13Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 14Central staff,
St. Olavs Hospital HF, 7006 Trondheim, Norway. 15Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
16Department of Pathology, Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland. 17Department of Urology, Tampere University Hospital,
Tampere, Finland. 18Department of Pathology, St. Olav’sHospital, TrondheimUniversity Hospital, Trondheim, Norway. 19Department ofClinical andMolecular
Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 20Research Program in Systems Oncology, Faculty of Medicine,
University of Helsinki, Helsinki, Finland. 21ICAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland. 22Nuffield Department of Surgical Sciences,
University of Oxford, Oxford, UK. 23Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland. 24Patrick G Johnston Centre for Cancer Research,
Queen’s University of Belfast, Belfast, UK. 25Department of Pathology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland. 26University
College London Hospitals, London, UK. 27Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland. 28Department of Tumor Biology, Institute
for Cancer Research, Oslo University Hospital, Oslo, Norway. 29These authors jointly supervised the work: Alfonso Urbanucci, Matti Nykter.

e-mail: alfonso.urbanucci@tuni.fi; matti.nykter@tuni.fi

Article https://doi.org/10.1038/s41467-024-54364-1

Nature Communications |         (2024) 15:9949 16

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-7419-0773
http://orcid.org/0000-0001-7419-0773
http://orcid.org/0000-0001-7419-0773
http://orcid.org/0000-0001-7419-0773
http://orcid.org/0000-0001-7419-0773
http://orcid.org/0000-0003-4345-1787
http://orcid.org/0000-0003-4345-1787
http://orcid.org/0000-0003-4345-1787
http://orcid.org/0000-0003-4345-1787
http://orcid.org/0000-0003-4345-1787
http://orcid.org/0000-0003-2883-2450
http://orcid.org/0000-0003-2883-2450
http://orcid.org/0000-0003-2883-2450
http://orcid.org/0000-0003-2883-2450
http://orcid.org/0000-0003-2883-2450
http://orcid.org/0009-0009-7052-9974
http://orcid.org/0009-0009-7052-9974
http://orcid.org/0009-0009-7052-9974
http://orcid.org/0009-0009-7052-9974
http://orcid.org/0009-0009-7052-9974
http://orcid.org/0000-0003-3703-9673
http://orcid.org/0000-0003-3703-9673
http://orcid.org/0000-0003-3703-9673
http://orcid.org/0000-0003-3703-9673
http://orcid.org/0000-0003-3703-9673
http://orcid.org/0009-0006-3176-7265
http://orcid.org/0009-0006-3176-7265
http://orcid.org/0009-0006-3176-7265
http://orcid.org/0009-0006-3176-7265
http://orcid.org/0009-0006-3176-7265
http://orcid.org/0000-0002-3345-4573
http://orcid.org/0000-0002-3345-4573
http://orcid.org/0000-0002-3345-4573
http://orcid.org/0000-0002-3345-4573
http://orcid.org/0000-0002-3345-4573
http://orcid.org/0000-0001-7559-9853
http://orcid.org/0000-0001-7559-9853
http://orcid.org/0000-0001-7559-9853
http://orcid.org/0000-0001-7559-9853
http://orcid.org/0000-0001-7559-9853
http://orcid.org/0000-0002-1514-3819
http://orcid.org/0000-0002-1514-3819
http://orcid.org/0000-0002-1514-3819
http://orcid.org/0000-0002-1514-3819
http://orcid.org/0000-0002-1514-3819
http://orcid.org/0009-0002-4227-6569
http://orcid.org/0009-0002-4227-6569
http://orcid.org/0009-0002-4227-6569
http://orcid.org/0009-0002-4227-6569
http://orcid.org/0009-0002-4227-6569
http://orcid.org/0000-0003-0725-6300
http://orcid.org/0000-0003-0725-6300
http://orcid.org/0000-0003-0725-6300
http://orcid.org/0000-0003-0725-6300
http://orcid.org/0000-0003-0725-6300
http://orcid.org/0000-0001-5513-6210
http://orcid.org/0000-0001-5513-6210
http://orcid.org/0000-0001-5513-6210
http://orcid.org/0000-0001-5513-6210
http://orcid.org/0000-0001-5513-6210
http://orcid.org/0000-0002-1959-0130
http://orcid.org/0000-0002-1959-0130
http://orcid.org/0000-0002-1959-0130
http://orcid.org/0000-0002-1959-0130
http://orcid.org/0000-0002-1959-0130
http://orcid.org/0000-0002-0755-0131
http://orcid.org/0000-0002-0755-0131
http://orcid.org/0000-0002-0755-0131
http://orcid.org/0000-0002-0755-0131
http://orcid.org/0000-0002-0755-0131
http://orcid.org/0000-0002-6719-2903
http://orcid.org/0000-0002-6719-2903
http://orcid.org/0000-0002-6719-2903
http://orcid.org/0000-0002-6719-2903
http://orcid.org/0000-0002-6719-2903
http://orcid.org/0000-0001-5812-3191
http://orcid.org/0000-0001-5812-3191
http://orcid.org/0000-0001-5812-3191
http://orcid.org/0000-0001-5812-3191
http://orcid.org/0000-0001-5812-3191
http://orcid.org/0000-0003-2029-6497
http://orcid.org/0000-0003-2029-6497
http://orcid.org/0000-0003-2029-6497
http://orcid.org/0000-0003-2029-6497
http://orcid.org/0000-0003-2029-6497
http://orcid.org/0000-0003-2157-8824
http://orcid.org/0000-0003-2157-8824
http://orcid.org/0000-0003-2157-8824
http://orcid.org/0000-0003-2157-8824
http://orcid.org/0000-0003-2157-8824
http://orcid.org/0000-0003-4502-2193
http://orcid.org/0000-0003-4502-2193
http://orcid.org/0000-0003-4502-2193
http://orcid.org/0000-0003-4502-2193
http://orcid.org/0000-0003-4502-2193
http://orcid.org/0000-0003-1639-3104
http://orcid.org/0000-0003-1639-3104
http://orcid.org/0000-0003-1639-3104
http://orcid.org/0000-0003-1639-3104
http://orcid.org/0000-0003-1639-3104
http://orcid.org/0000-0003-3195-9890
http://orcid.org/0000-0003-3195-9890
http://orcid.org/0000-0003-3195-9890
http://orcid.org/0000-0003-3195-9890
http://orcid.org/0000-0003-3195-9890
http://orcid.org/0000-0002-7720-5077
http://orcid.org/0000-0002-7720-5077
http://orcid.org/0000-0002-7720-5077
http://orcid.org/0000-0002-7720-5077
http://orcid.org/0000-0002-7720-5077
http://orcid.org/0000-0003-1204-9963
http://orcid.org/0000-0003-1204-9963
http://orcid.org/0000-0003-1204-9963
http://orcid.org/0000-0003-1204-9963
http://orcid.org/0000-0003-1204-9963
http://orcid.org/0000-0002-4811-7983
http://orcid.org/0000-0002-4811-7983
http://orcid.org/0000-0002-4811-7983
http://orcid.org/0000-0002-4811-7983
http://orcid.org/0000-0002-4811-7983
http://orcid.org/0000-0002-8676-7709
http://orcid.org/0000-0002-8676-7709
http://orcid.org/0000-0002-8676-7709
http://orcid.org/0000-0002-8676-7709
http://orcid.org/0000-0002-8676-7709
http://orcid.org/0000-0001-6549-7810
http://orcid.org/0000-0001-6549-7810
http://orcid.org/0000-0001-6549-7810
http://orcid.org/0000-0001-6549-7810
http://orcid.org/0000-0001-6549-7810
http://orcid.org/0000-0001-5734-2157
http://orcid.org/0000-0001-5734-2157
http://orcid.org/0000-0001-5734-2157
http://orcid.org/0000-0001-5734-2157
http://orcid.org/0000-0001-5734-2157
http://orcid.org/0000-0003-2931-3652
http://orcid.org/0000-0003-2931-3652
http://orcid.org/0000-0003-2931-3652
http://orcid.org/0000-0003-2931-3652
http://orcid.org/0000-0003-2931-3652
http://orcid.org/0000-0001-6956-2843
http://orcid.org/0000-0001-6956-2843
http://orcid.org/0000-0001-6956-2843
http://orcid.org/0000-0001-6956-2843
http://orcid.org/0000-0001-6956-2843
mailto:alfonso.urbanucci@tuni.fi
mailto:matti.nykter@tuni.fi
www.nature.com/naturecommunications

	Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer
	Results
	Sample-independent deconvolution of spatial transcriptomics data with a single cell-derived cell state reference
	Single-cell mapping-derived regions capture well-established biology
	Androgen deprivation promotes basal and club-like epithelial phenotypes
	The Club region is tied to inflammation and senescence-associated secretory phenotype
	Areas proximal to the Club region have increased polymorphonuclear myeloid-derived suppressor cell activity
	Club-derived ligand-receptor signaling activity is specific to the interacting region
	Club-like senescence is associated with immunosuppressive PMN-MDSC activity in primary and metastatic tumors

	Discussion
	Methods
	Sample collection
	Spatial transcriptomics assay
	Histopathology evaluation
	Spatial transcriptomics data preprocessing
	Single-cell reference mapping
	Defining single-cell mapping-based regions
	Region-specific gene markers
	Neighborhood enrichment analysis
	Spot-level gene set activity scoring and gene set enrichment analysis
	Region fraction and gene signature score correlation analysis
	Multiplex immunohistochemistry staining
	Multiplex immunohistochemistry image processing
	Region interface annotation and ligand-receptor analysis
	Analysis of metastatic CRPC scRNA-seq data
	Spatial transcriptomics data analysis of metastatic prostate cancer tumors
	Analysis of bulk transcriptomics data
	Spatial transcriptomics pseudo-bulk GSVA and differential expression analysis
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




